Skip to main content

Advertisement

Log in

Saccharomyces cerevisiae as a model system to study the response to anticancer agents

  • Review Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

The development of new strategies for cancer therapeutics is indispensable for the improvement of standard protocols and the creation of other possibilities in cancer treatment. Yeast models have been employed to study numerous molecular aspects directly related to cancer development, as well as to determine the genetic contexts associated with anticancer drug sensitivity or resistance. The budding yeast Saccharomyces cerevisiae presents conserved cellular processes with high homology to humans, and it is a rapid, inexpensive and efficient compound screening tool. However, yeast models are still underused in cancer research and for screening of antineoplastic agents. Here, the employment of S. cerevisiae as a model system to anticancer research is discussed and exemplified. Focusing on the important determinants in genomic maintenance and cancer development, including DNA repair, cell cycle control and epigenetics, this review proposes the use of mutant yeast panels to mimic cancer phenotypes, screen and study tumor features and synthetic lethal interactions. Finally, the benefits and limitations of the yeast model are highlighted, as well as the strategies to overcome S. cerevisiae model limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

5-FU:

5-Fluorouracil

Azacitidine:

5-azacytidine

ATR:

Ataxia telangiectasia and Rad3 related

ATRIP:

ATR-interacting protein

ATM:

Ataxia telangiectasia mutated

BER:

Base excision repair

Decitabine:

5-aza-2′-deoxycytidine

DNMT:

DNA methyl transferase

DSB:

Double-strand break

ET-743:

Ecteinascidin-743

FdUMP:

5-Fluoro-2′-deoxyuridine 5′-monophosphate

HAT:

Histone acetyl transferase

HDAC:

Histone deacetylase

HMGB:

High mobility group box-1

HR:

Homologous recombination

K:

lysine

MMR:

Mismatch repair

MMS:

Methyl methane sulfonate

NER:

Nucleotide excision repair

NHEJ:

Non-homologous end-joining

PARP:

Poli (ADP-ribose) polymerase

PBA:

Sodium phenylbutyrate

PCNA:

Proliferating cell nuclear antigen

PI3K:

Phosphatidylinositol 3-kinase

PRR:

Post-replication repair

RPA:

Replication protein A

SAHA:

Suberoylanilide hydroxamic acid

TLS:

Translesion synthesis

TopBP1:

Topoisomerase-binding protein-1

ssDNA:

Single-strand DNA

References

  1. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  2. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  PubMed  CAS  Google Scholar 

  3. Spradling A, Ganetsky B, Hieter P, Johnston M, Olson M, Orr-Weaver T, Rossant J, Sanchez A, Waterston R (2006) New roles for model genetic organisms in understanding and treating human disease: report from the 2006 Genetic Society of America Meeting. Genetics 172:2025–2032

    PubMed  CAS  Google Scholar 

  4. Perego P, Jimenez GS, Gatti L, Howell SB, Zunino F (2000) Yeast mutants as a model systems for identification of determinants of chemosensitivity. Pharmacol Rev 52:477–491

    PubMed  CAS  Google Scholar 

  5. Kurtz JE, Dufour P, Duclos B, Bergerat JP, Exinger F (2004) Saccharomyces cerevisiae: an efficient tool and model system for anticancer research. Bull Cancer 91:133–139

    PubMed  CAS  Google Scholar 

  6. Carr AM, Hoeskstra MF (1995) The cellular response to DNA damage. Trends Cell Biol 5:32–40

    Article  PubMed  CAS  Google Scholar 

  7. Freire R, Murguia JR, Tarsounas M, Lowndes NF, Moens PB, Jackson SP (1998) Human and mouse homologs of Schizosaccharomyces pombe rad1 and Saccharomyces cerevisiae RAD17: linkage to checkpoint control and mammalian meiosis. Genes Dev 12:2560–2573

    Article  PubMed  CAS  Google Scholar 

  8. Simon JA, Bedalov A (2004) Yeast as a model system for anticancer drug discovery. Nat Rev Cancer 4:1–8

    Article  CAS  Google Scholar 

  9. Longhese MP, Foiani M, Mulzi-Falconi M, Luccini G, Plevani P (1998) DNA damage checkpoint in budding yeast. EMBO 17:5525–5528

    Article  CAS  Google Scholar 

  10. Klionsky DJ, Cregg JM, Dunn WA Jr, Emr SD, Sakay Y, Sandoval IV, Sibirny A, Subramani S, Thumm M, Veenhuis M, Ohsumi Y (2003) A unified nomenclature for yeast autophagy-related genes. Dev Cell 5:539–545

    Article  PubMed  CAS  Google Scholar 

  11. Suzuki K, Ohsumi Y (2007) Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae. FEBS Lett 581:2156–2161

    Article  PubMed  CAS  Google Scholar 

  12. Almeida B, Silva A, Mesquita A, Sampaio-Marques B, Rodrigues F, Ludovico P (2008) Drug-induced apoptosis in yeast. Biochim Biophys Acta 1783:1436–1448

    Article  PubMed  CAS  Google Scholar 

  13. Karathia H, Vilaprinyo E, Sorribas A, Alves R (2011) Saccharomyces cerevisiae as a model organism: a comparative study. PLoS One 6:1–10

    Article  CAS  Google Scholar 

  14. Mager WH, Winderichx J (2005) Yeast as a model for medical and medicinal research. Trends Pharmacol Sci 26:265–273

    Article  PubMed  CAS  Google Scholar 

  15. Botstein D, Chervitz SA, Cherry JM (1997) Yeast as a model organism. Science 277:1259–1260

    Article  PubMed  CAS  Google Scholar 

  16. Bolotin-Fukuhara M, Dumas B, Gaillardin C (2010) Yeasts as a model for human diseases. FEMS Yeast Res 10:959–960

    Article  PubMed  CAS  Google Scholar 

  17. Strome ED, Plon SE (2010) Utilizing Saccharomyces cerevisiae to identify aneuploidy and cancer susceptibility genes. Methods Mol Biol 653:73–85

    Article  PubMed  CAS  Google Scholar 

  18. Stirling PC, Bloom MS, Solanki-Patil T, Smith S, Sipahimalani P, Li Z, Kofoed M, Ben-Aroya S, Myung K, Hieter P (2011) The complete spectrum of yeast chromosome instability genes identifies candidate CIN cancer genes and functional roles for ASTRA complex components. PLoS Genet 7:1002057

    Article  CAS  Google Scholar 

  19. Yuen KWY, Warren CD, Chen O, Kwok T, Hieter P, Spencer FA (2007) Systematic genome instability screens in yeast and their potential relevance to cancer. Proc Natl Acad Sci USA 104:3925–3930

    Article  PubMed  CAS  Google Scholar 

  20. Ardiani A, Higgins JP, Hodge JW (2010) Vaccines based on whole recombinant Saccharomyces cerevisiae cells. FEMS Yeast Res 10:1060–1069

    Article  PubMed  CAS  Google Scholar 

  21. Meyskens FL Jr, Gerner EW (2011) Back to the future: mechanism-based, mutation-specific combination chemoprevention with a synthetic lethality approach. Cancer Prev Res 4:628–632

    Article  Google Scholar 

  22. Banerjee S, Kaye SB, Ashworth A (2010) Making the best of PARP inhibitors in ovarian cancer. Nat Rev Clin Oncol 7:508–519

    Article  PubMed  CAS  Google Scholar 

  23. Rouleau M, Patel A, Hendzel MJ, Kaufmann SH, Poirier GG (2010) PARP inhibition: PARP1 and beyond. Nat Rev Cancer 10:293–301

    Article  PubMed  CAS  Google Scholar 

  24. Hartwell LH, Szankasi P, Roberts CJ, Murray AW, Friend SH (1997) Integrating genetic approaches into the discovery of anticancer drugs. Science 278:1064–1068

    Article  PubMed  CAS  Google Scholar 

  25. Broomfield S, Hryciw T, Xiao W (2001) DNA postreplication repair and mutagenesis in Saccharomyces cerevisiae. Mutat Res 486:167–184

    Article  PubMed  CAS  Google Scholar 

  26. Fox EJ (2004) Mechanism of action of mitoxantrone. Neurology 63:15–18

    Article  Google Scholar 

  27. Moore DM, Karlin J, González-Barrera S, Mardiros A, Lisby M, Doughty A, Gilley J, Rothstein R, Friedberg EC, Fischhaber PL (2009) Rad10 exhibits lesion-dependent genetic requirements for recruitment to DNA double-strand breaks in Saccharomyces cerevisiae. Nucleic Acids Res 37:6429–6438

    Article  PubMed  CAS  Google Scholar 

  28. Kule C, Ondrejickova O, Verner K (1994) Doxorubicin, daunorubicin, and mitroxantrone cytotoxicity in yeast. Mol Pharmacol 46:1234–1240

    PubMed  CAS  Google Scholar 

  29. Chen XJ, Clark-Walker GD (2000) The petite mutation in yeasts: 50 years on. Int Rev Cytol 194:197–238

    Article  PubMed  CAS  Google Scholar 

  30. Contamine V, Picard M (2000) Maintenance and integrity of the mitochondrial genome: a plethora of nuclear genes in the budding yeast. Microbiol Mol Biol Rev 64:281–315

    Article  PubMed  CAS  Google Scholar 

  31. Buschini A, Poli P, Rossi C (2003) Saccharomyces cerevisiae as an eukaryotic cell model to access cytotoxicity and genotoxicity of three anticancer anthraquinones. Mutagenesis 18:25–36

    Article  PubMed  CAS  Google Scholar 

  32. Aouida M, Page N, Leduc A, Peter M, Ramotar DA (2004) Genome-wide screen in Saccharomyces cerevisiae reveals altered transport as a mechanism of resistance to the anticancer drug bleomycin. Cancer Res 64:1102–1109

    Article  PubMed  CAS  Google Scholar 

  33. Hoffmann GR, Laterza AM, Sylvia KE, Tartaglione JP (2011) Potentiation of the mutagenicity and recombinagenicity of bleomycin in yeast by unconventional intercalating agents. Environ Mol Mutagen 52:130–144

    Article  PubMed  CAS  Google Scholar 

  34. Milla LA, Cortés CR, Hodar QC, Oñate MG, Cambiazo V, Burgess SM, Palma V (2012) Yeast-based assay identifies novel Shh/Gli target genes in vertebrate development. BMC Genomics 13:2

    Article  PubMed  CAS  Google Scholar 

  35. Saze Z, Terashima M, Kogure M, Ohsuka F, Suzuki H, Gotoh M (2012) Activation of the Sonic Hedgehog Pathway and its prognostic impact in patients with gastric cancer. Dig Surg 29(2):115–123

    Article  PubMed  CAS  Google Scholar 

  36. Yang L, Wang LS, Chen XL, Gatalica Z, Wiu S, Liu Z, Stoner G, Zhang G, Weiss H, Xie J (2012) Hedgehog signaling activation in the development of squamous cell carcinoma and adenocarcinoma of esophagus. Int J Biochem Mol Biol 3(1):46–57

    PubMed  Google Scholar 

  37. Lillo O, Bracesco N, Nunes E (2011) Lethal and mutagenic interactions between γ-rays, cisplatin and etoposide at the cellular and molecular levels. Int J Radiat Biol 87:222–230

    Article  PubMed  CAS  Google Scholar 

  38. Keszenman DJ, Candreva EC, Nunes E (2000) Cellular and molecular effects of bleomycin are modulated by heat shock in Saccharomyces cerevisiae. Mutat Res 459:29–41

    Article  PubMed  CAS  Google Scholar 

  39. Keszenman DJ, Candreva EC, Sánchez AG, Nunes E (2005) RAD6 gene is involved in heat shock induction of bleomycin resistance in Saccharomyces cerevisiae. Environ Mol Mutagen 45:36–43

    Article  PubMed  CAS  Google Scholar 

  40. Swanson RL, Morey NJ, Doetsch PW, Jinks-Robertson S (1999) Overlapping specificities of base excision repair, nucleotide excision repair, recombination and translesion synthesis pathways for DNA base damage in Saccharomyces cerevisiae. Mol Cell Biol 19:2929–2935

    PubMed  CAS  Google Scholar 

  41. Hsieh P (2001) Molecular mechanisms of DNA mismatch repair. Mutat Res 486:71–87

    Article  PubMed  CAS  Google Scholar 

  42. Bernstein C, Bernstein H, Payne CM, Garewal H (2002) DNA repair/pro-apoptotic dual role proteins in five major DNA repair pathways: fail-safe protection against carcinogenesis. Mutat Res 511:145–178

    Article  PubMed  CAS  Google Scholar 

  43. Dudás A, Chovanec M (2004) Double strand break repair by homologous recombination. Mutat Res 566:131–167

    Article  PubMed  CAS  Google Scholar 

  44. Dudásová Z, Dudás A, Chovanec M (2004) Non-homologous end-joining factors of Saccharomyces cerevisiae. FEMS Microbiol Rev 28:581–601

    Article  PubMed  CAS  Google Scholar 

  45. Iyer RR, Pluciennik A, Burdett V, Modrich PL (2006) DNA mismatch repair: functions and Mechanisms. Chem Rev 106:302–323

    Article  PubMed  CAS  Google Scholar 

  46. Peltomäki P (2001) DNA mismatch repair and cancer. Mutat Res 488:77–85

    Article  PubMed  Google Scholar 

  47. Andressoo JO, Hoeijmakers JHJ, Mitchell JR (2006) Nucleotide excision repair disorders and the balance between cancer and aging. Cell Cycle 5:2886–2888

    Article  PubMed  CAS  Google Scholar 

  48. Saffi J, Feldmann H, Winnacker EL, Henriques JAP (2001) Interaction of the yeast Pso5/Rad16 and Sgs1 proteins: influences on DNA repair and aging. Mutat Res 486:195–206

    Article  PubMed  CAS  Google Scholar 

  49. Saffi J, Pereira VR, Henriques JAP (2000) Importance of the Sgs1 helicase activity in DNA repair of Saccharomyces cerevisiae. Curr Genet 37:75–78

    Article  PubMed  CAS  Google Scholar 

  50. Rossi ML, Ghosh AK, Bohr VA (2010) Roles of Werner syndrome protein in protection of genome integrity. DNA Repair 9:331–344

    Article  PubMed  CAS  Google Scholar 

  51. Mohammed MZ, Vyjayanti VN, Laughton CA, Dekker LV, Fischer PM, Wilson DM III, Abbotts R, Shah S, Patel PM, Hickson ID, Madhusudan S (2011) Development and evaluation of human AP endonuclease inhibitors in melanoma and glioma cell lines. Br J Cancer 104:653–663

    Article  PubMed  CAS  Google Scholar 

  52. Helleday T, Petermann E, Lundin C, Hodgson B, Sharma RA (2008) DNA repair pathways as targets for cancer therapy. Nat Rev 8:193–204

    CAS  Google Scholar 

  53. Smith AM, Ammar R, Nislow C, Giaever G (2010) A survey of yeast genomic assays for drug and target discovery. Pharmacol Ther 127:156–164

    Article  PubMed  CAS  Google Scholar 

  54. Anders CK, Winer EP, Ford JM, Dent R, Silver DP, Sledge GW, Carey LA (2010) Poly(ADP-Ribose) polymerase inhibitor: “Targeted” therapy for triple-negative breast cancer. Clin Cancer Res 16:4702–4710

    Article  PubMed  CAS  Google Scholar 

  55. Carden CP, Yap TA, Kaye SB (2010) PARP inhibition: targeting the Achilles’ heel of DNA repair to treat germline and sporadic ovarian cancers. Curr Opin Oncol 22:473–480

    Article  PubMed  CAS  Google Scholar 

  56. Simon JA, Szankasi P, Nguyen DK, Ludlow C, Dunstan HM, Roberts CJ, Jensen EL, Hartwell LH, Friend SH (2000) Differential toxicities of anticancer agents among DNA repair and checkpoint mutants of Saccharomyces cerevisiae. Cancer Res 60:328–333

    PubMed  CAS  Google Scholar 

  57. Canaani D (2009) Methodological approaches in application of synthetic lethality screening towards anticancer therapy. Br J Cancer 100:1213–1218

    Article  PubMed  CAS  Google Scholar 

  58. Dunstan HM, Ludlow C, Goehle S, Cronk M, Szankasi P, Evan DRH, Simon JA, Lamb JR (2002) Cell-based assays for identification of novel double-strand break-inducing agents. J Natl Cancer Inst 94:88–94

    Article  PubMed  CAS  Google Scholar 

  59. Seiple L, Jaruga P, Dizdaroglu M, Stivers JT (2006) Linking uracil base excision repair and 5-fluorouracil toxicity in yeast. Nucleic Acids Res 34:140–151

    Article  PubMed  CAS  Google Scholar 

  60. Luo M, Kelley MR (2004) Inhibition of the human apurinic/apyrimidinic endonuclease (Ape1) repair activity and sensitization of breast cancer cells to DNA alkylating agents with lucanthone. Anticancer Res 24:2127–2134

    PubMed  CAS  Google Scholar 

  61. Madhusudan S, Smart F, Shrimpton P, Parsons JL, Gardiner L, Houlbrook S, Talbot DC, Hammonds T, Freemont PA, Sternberg ME, Dianov GL, Hickson ID (2005) Isolation of a small molecule inhibitor of DNA base excision repair. Nucleic Acids Res 33:4711–4724

    Article  PubMed  CAS  Google Scholar 

  62. Bapat A, Glass LTS, Luo M, Fishel ML, Long EC, Georgiadis MM, Kelley MR (2010) Novel Small-molecule inhibitor of apurinic/apyrimidinic endonuclease 1 blocks proliferation and reduces viability of glioblastoma cells. J Pharmacol Exp Ther 334:988–998

    Article  PubMed  CAS  Google Scholar 

  63. Wilson DM III, Simeonov A (2010) Small molecule inhibitors of DNA repair nuclease activities of APE1. Cell Mol Life Sci 67:3621–3631

    Article  PubMed  CAS  Google Scholar 

  64. Abbotts R, Madhusudan S (2010) Human AP endonuclease 1 (APE1): from mechanistic insights to druggable target in cancer. Cancer Treat Rev 36:425–435

    Article  PubMed  CAS  Google Scholar 

  65. Soares DG, Poletto NP, Bonatto D, Salvador M, Schwartsmann G, Henriques JAP (2005) Low cytotoxicity of ecteinascidin 743 in yeast lacking the major endonucleolytic enzymes of base and nucleotide excision repair pathways. Biochem Pharmacol 70:59–69

    Article  PubMed  CAS  Google Scholar 

  66. Matuo R, Sousa FG, Escargueil AE, Soares DG, Grivicich I, Saffi J, Larsen AK, Henriques JAP (2010) DNA repair pathways involved in repair of lesions induced by 5-fluorouracil and its active metabolite FdUMP. Biochem Pharmacol 79:147–153

    Article  PubMed  CAS  Google Scholar 

  67. Weinert TA, Hartwell LH (1988) The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science 241:317–322

    Article  PubMed  CAS  Google Scholar 

  68. Foiani M, Pellicioli A, Lopes M, Lucca C, Ferrari M, Liberi G, Muzi Falconi M, Plevani P (2000) DNA damage checkpoints and DNA replication controls in Saccharomyces cerevisiae. Mutat Res 451:187–196

    Article  PubMed  CAS  Google Scholar 

  69. Poehlmann A, Roessner A (2010) Importance of DNA damage checkpoints in the pathogenesis of human cancers. Pathol Res Pract 206:591–601

    Article  PubMed  CAS  Google Scholar 

  70. Jung PP, Fritsch ES, Blugeon C, Souciet JL, Potier S, Lemoine S, Schacherer J, Montigny J (2011) Ploidy influences cellular responses to gross chromosomal rearragements in Saccharomyces cerevisiae. BMC Genomics 12:331

    Article  PubMed  Google Scholar 

  71. Putnam CD, Jaehnig EJ, Kolodner RD (2009) Perspectives on the DNA damage and replication checkpoint responses in Saccharomyces cerevisiae. DNA Repair 8:974–982

    Article  PubMed  CAS  Google Scholar 

  72. Lucca C, Vanoli F, Cotta-Ramusino C, Pellicioli A, Liberi G, Haber J, Foiani M (2004) Checkpoint-mediated control of replisome-fork association and signalling in response to replication pausing. Oncogene 23:1206–1213

    Article  PubMed  CAS  Google Scholar 

  73. Pellicioli A, Foiani M (2005) Signal transduction: how rad53 kinase is activated. Curr Biol 15:769–771

    Article  CAS  Google Scholar 

  74. Mordes DA, Glick GG, Zhao R, Cortez D (2008) TopBP1 activates ATR through ATRIP and PIKK regulatory domain. Genes Dev 22:1478–1489

    Article  PubMed  CAS  Google Scholar 

  75. Mordes DA, Nam EA, Cortez D (2008) Dpb11 activates the Mec1–Ddc2 complex. Proc Natl Acad Sci USA 48:18730–18734

    Article  Google Scholar 

  76. Navadgi-Patil VM, Burgers PM (2009) A tale of two tails: activation of DNA damage checkpoint kinase Mec1/ATR by the 9–1-1 clamp and by Dpb11/TopBP1. DNA Repair 8:996–1003

    Article  PubMed  CAS  Google Scholar 

  77. Murakami-Sekimata A, Huang D, Piening BD, Bangur C, Paulovich AG (2010) The Saccharomyces cerevisiae RAD9, RAD17 and RAD24 genes are required for suppression of mutagenic post-replicative repair during chronic DNA damage. DNA Repair 9:824–834

    Article  PubMed  CAS  Google Scholar 

  78. Rupnik A, Lowndes NF, Grenon M (2010) MRN and the race to the break. Chromosoma 119:115–135

    Article  PubMed  Google Scholar 

  79. Wang Y, Beerman TA, Kowalski D (2001) Antitumor drug adozelesin differentially affects active and silent origins of DNA replication in yeast checkpoint kinase mutants. Cancer Res 61:3787–3794

    PubMed  CAS  Google Scholar 

  80. Zhang H, Siede W (2003) Validation of a novel assay for checkpoint responses: characterization of camptothecin derivatives in Saccharomyces cerevisiae. Mutat Res 527:37–48

    Article  PubMed  CAS  Google Scholar 

  81. Brendel M, Bonatto D, Strauss M, Revers LF, Pungartnik C, Saffi J, Henriques JAP (2003) Role of PSO genes in repair of DNA damage of Saccharomyces cerevisiae. Mutat Res 544:179–193

    Article  PubMed  CAS  Google Scholar 

  82. Cardone JM, Revers LF, Machado RM, Bonatto D, Brendel M, Henriques JAP (2006) Psoralen-sensitive mutant pso9-1 of Saccharomyces cerevisiae contains a mutant allele of the DNA damage checkpoint gene MEC3. DNA Repair 5:163–171

    Article  PubMed  CAS  Google Scholar 

  83. McNeely S, Conti C, Sheikh T, Patel H, Zabludoff S, Pommier Y, Schwartz G, Tse A (2010) Chk1 inhibition after replicative stress activates a double strand break response mediated by ATM and DNA-dependent protein kinase. Cell Cycle 9:995–1004

    Article  PubMed  CAS  Google Scholar 

  84. Sharma S, Kelly TK, Jones PA (2010) Epigenetics in cancer. Carcinogenesis 31:27–36

    Article  PubMed  CAS  Google Scholar 

  85. Plass C (2002) Cancer epigenomics. Hum Mol Genet 11:2479–2488

    Article  PubMed  CAS  Google Scholar 

  86. Kristensen LS, Nielsen HM, Hansen LL (2009) Epigenetics and cancer treatment. Eur J Pharmacol 625:131–142

    Article  PubMed  CAS  Google Scholar 

  87. Andersson U, Erlandsson-Harris H, Yang H, Tracey KJ (2002) HMGB1 as a DNA-binding cytokine. J Leukoc Biol 72:1084–1091

    PubMed  CAS  Google Scholar 

  88. Brezniceanu ML, Völp K, Bösse S, Solbach C, Lichter P, Joos S, Zörnig M (2003) HMGB1 inhibits cell death in yeast and mammalian cells and is abundantly expressed in human breast carcinoma. FASEB J 17:1295–1297

    PubMed  CAS  Google Scholar 

  89. Egger G, Liang G, Aparicio A, Jones PA (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429:457–463

    Article  PubMed  CAS  Google Scholar 

  90. Lafon-Hughes L, Di Tomaso MV, Méndez-Acuña L, Martinez-Lopez W (2008) Chromatin-remodelling mechanisms in cancer. Mutat Res 658:191–214

    Article  PubMed  CAS  Google Scholar 

  91. Kaiser GS, Germann SM, Westergaard T, Lisby M (2011) Phenylbutyrate inhibits homologous recombination induced by camptothecin and methyl methanesulfonate. Mutat Res 713:64–75

    Article  PubMed  CAS  Google Scholar 

  92. Bedalov A, Gatbonton T, Irvine WP, Gottschling DE, Simon JA (2001) Identification of a small molecule inhibitor of Sir2p. Proc Natl Acad Sci USA 98:15113–15118

    Article  PubMed  CAS  Google Scholar 

  93. Hirao M, Posakony J, Nelson M, Hruby H, Jung M, Simon JA, Bedalov A (2003) Identification of selective inhibitors of NAD+ dependent deacetylases using phenotypic screens in yeast. J Biol Chem 278:52773–52782

    Article  PubMed  CAS  Google Scholar 

  94. Weerasinghe SVW, Wambua M, Pflum MKH (2010) A histone deacetylase-dependent screen in yeast. Bioorg Med Chem 18:7586–7592

    Article  PubMed  CAS  Google Scholar 

  95. Ataian Y, Krebs JE (2006) Five repair pathways in one context: chromatin modification during DNA repair. Biochem Cell Biol 84:490–504

    Article  PubMed  CAS  Google Scholar 

  96. Escargueil AE, Soares DG, Salvador M, Larsen AK, Henriques JAP (2008) What histone code for DNA repair? Mutat Res Rev 658:259–270

    Article  CAS  Google Scholar 

  97. Van Attikum H, Gasser SM (2005) The histone code at DNA breaks: a guide to repair? Nat Rev Mol Cell Biol 6:757–765

    Article  PubMed  CAS  Google Scholar 

  98. Labazi M, Jaafar L, Flores-Rozas H (2009) Modulation of the DNA-binding activity of Saccharomyces cerevisiae MSH2–MSH6 complex by the high-mobility group protein NHP6A, in vitro. Nucleic Acids Res 37:7581–7589

    Article  PubMed  CAS  Google Scholar 

  99. Resnick MA, Cox BS (2000) Yeast as an honorary mammal. Mutat Res 451:1–11

    Article  PubMed  CAS  Google Scholar 

  100. Kolaczkowski M, Goffeau A (1997) Active efflux by multidrug transporters as one of the strategies to evade chemotherapy and novel practical implications of yeast pleiotropic drug resistance. Pharmacol Ther 76:219–242

    Article  PubMed  CAS  Google Scholar 

  101. Nitiss J, Wang JC (1988) DNA topoisomerase-targeting antitumor drugs can be studied in yeast. Proc Natl Acad Sci USA 85:7501–7505

    Article  PubMed  CAS  Google Scholar 

  102. Reid RJD, Kauh EA, Bjornsti MA (1997) Camptothecin sensitivity is mediated by the pleotropic drug resistance network in yeast. J Biol Chem 272:12091–12099

    Article  PubMed  CAS  Google Scholar 

  103. Kaur R, Bachhawatt AK (1999) The yeast multidrug resistance pump, Pdr5p, confers reduced drug resistance in erg mutants of Saccharomyces cerevisiae. Microbiology 145:809–818

    Article  PubMed  CAS  Google Scholar 

  104. Hlavacek O, Kucerova H, Harant K, Palkova Z, Vachova L (2009) Putative role for ABC multidrug exporters in yeast quorum sensing. FEBS Lett 583:1107–1113

    Article  PubMed  CAS  Google Scholar 

  105. Bjornsti MA (2002) Cancer therapeutics in yeast. Cancer Cell 2:267–273

    Article  PubMed  CAS  Google Scholar 

  106. Flaman JM, Frebourg T, Moreau V, Charbonnier F, Martin C, Chappuis P, Sappino AP, Limacher IM, Bron L, Benhattar J (1995) A simple p53 functional assay for screening cell lines, blood and tumors. Proc Natl Acad Sci USA 92:3963–3967

    Article  PubMed  CAS  Google Scholar 

  107. Inga A, Resnick MA (2001) Novel human p53 mutation that are toxic to yeast can enhance transactivation of specific promoters and reactivate tumor p53 mutants. Oncogene 20:3409–3419

    Article  PubMed  CAS  Google Scholar 

  108. Jin C, Reed JC (2002) Yeast and apoptosis. Nat Rev Mol Cell Biol 3:453–459

    Article  PubMed  CAS  Google Scholar 

  109. Xu Q, Reed JC (1998) Bax inhibitor-1, a mammalian apoptosis suppressor identified by functional screening in yeast. Mol Cell 1:337–346

    Article  PubMed  CAS  Google Scholar 

  110. Sato T, Hanada M, Bodrug S, Irie S, Iwama N, Boise LH, Thompson CB, Golemis E, Fong L, Wang HG, Reed JC (1994) Interactions among members of the Bcl-2 protein family analyzed with a yeast two-hybrid system. Proc Natl Acad Sci USA 91:9238–9242

    Article  PubMed  CAS  Google Scholar 

  111. Hanada M, Aimé-Sempé C, Sato T, Reed JC (1995) Structure-function analysis of Bcl-2 protein. Identification of conserved domains important for homodimerization with Bcl-2 and heterodimerization with Bax. J Biol Chem 270:11962–11969

    Article  PubMed  CAS  Google Scholar 

  112. Lynch T, Price A (2007) The effect of cytochrome P450 metabolism on drug response, interactions and adverse effects. Am Fam Physician 76:391–396

    PubMed  Google Scholar 

  113. Guo Y, Breeden LL, Zarbl H, Preston BD, Eaton DL (2005) Expression of a human cytochrome p450 in yeast permits analysis of pathways for response to and repair of aflatoxin-induced DNA damage. Mol Cell Biol 25:5823–5833

    Article  PubMed  CAS  Google Scholar 

  114. Purnapatre K, Khattar SK, Saini KS (2008) Cytochrome P450s in the development of target-based anticancer drugs. Cancer Lett 259:1–15

    Article  PubMed  CAS  Google Scholar 

  115. Del Carratore MR, Mezzatesta C, Hidestrand M, Neve P, Amato G, Gervasi PG (2000) Cloning and expression of rat CYP2E1 in Saccharomyces cerevisiae: detection of genotoxicity of N-alkylformamides. Environ Mol Mutagen 36:97–104

    Article  PubMed  Google Scholar 

  116. Masimirembwa CM, Otter C, Berg M, Jönsson M, Leidvik B, Jonsson E, Johansson T, Bäckman A, Edlund A, Andersson TB (1999) Heterologous expression and kinetic characterization of human cytochrome P-450: validation of a pharmaceutical tool for drug metabolism research. Drug Metab Dispos 27:1117–1122

    PubMed  CAS  Google Scholar 

  117. Peters FT, Bureik M, Maurer HH (2009) Biotechnological synthesis of drug metabolites using human cytochrome P450 isozymes heterologously expressed in fission yeast. Bioanalysis 1:821–830

    Article  PubMed  CAS  Google Scholar 

  118. Longley DB, Harkin DP, Johnston PG (2003) 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 3:330–338

    Article  PubMed  CAS  Google Scholar 

  119. Ladner RD (2001) The role of dUTPase and uracil-DNA repair in cancer chemotherapy. Curr Protein Pept Sci 2:361–370

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Temenouga N. Guecheva (Departamento de Biofisica da UFRGS) for critically reading the manuscript. This work was supported by research grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Biotecnology Center University of Rio Grande do Sul, Fundação de Coordenação de Aperfeiçoamento de Pessoal de Nível Superior CAPES/Cofecub (grants No. 583/07) and PRONEX/FAPERGS/CNPq (no. 10/0044-3). Renata Matuo and Fabricio have a fellowship from CNPq and CAPES, respectively, and are graduate students at UFRGS.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Antonio Pêgas Henriques.

Additional information

Renata Matuo and Fabrício G. Sousa contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matuo, R., Sousa, F.G., Soares, D.G. et al. Saccharomyces cerevisiae as a model system to study the response to anticancer agents. Cancer Chemother Pharmacol 70, 491–502 (2012). https://doi.org/10.1007/s00280-012-1937-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-012-1937-4

Keywords

Navigation