Irrigation Science

, Volume 31, Issue 1, pp 27–36

Numerical investigation of irrigation scheduling based on soil water status

  • Sharon Dabach
  • Naftali Lazarovitch
  • Jirka Šimůnek
  • Uri Shani
Original Paper

DOI: 10.1007/s00271-011-0289-x

Cite this article as:
Dabach, S., Lazarovitch, N., Šimůnek, J. et al. Irrig Sci (2013) 31: 27. doi:10.1007/s00271-011-0289-x

Abstract

Improving the sustainability of irrigation systems requires the optimization of operational parameters such as irrigation threshold and irrigation amount. Numerical modeling is a fast and accurate means to optimize such operational parameters. However, little work has been carried out to investigate the relationship between irrigation scheduling, irrigation threshold, and irrigation amount. Herein, we compare the results of HYDRUS 2D/3D simulations with experimental data from triggered drip irrigation, and optimize operational parameters. Two field experiments were conducted, one on loamy sand soil and one on sandy loam soil, to evaluate the overall effects of different potential transpiration rates and irrigation management strategies, on the triggered irrigation system. In both experiments, irrigation was controlled by a closed loop irrigation system linked to tensiometers. Collected experimental data were analyzed and compared with HYDRUS 2D/3D simulations. A system-dependant boundary condition, which initiates irrigation whenever the matric head at a predetermined location drops below a certain threshold, was implemented into the code. The experimental model was used to evaluate collected experimental data, and then to optimize the operational parameters for two hypothetical soils. The results show that HYDRUS 2D/3D predictions of irrigation events and matric heads are in good agreement with experimental data, and that the code can be used to optimize irrigation thresholds and water amounts applied in an irrigation episode to increase the efficiency of water use.

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Sharon Dabach
    • 1
  • Naftali Lazarovitch
    • 2
  • Jirka Šimůnek
    • 3
  • Uri Shani
    • 1
  1. 1.Seagram Center for Soil and Water Sciences, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
  2. 2.Wyler Department of Dryland Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert ResearchBen-Gurion University of the NegevMidreshet Ben-GurionIsrael
  3. 3.Department of Environmental SciencesUniversity of California RiversideRiversideUSA