Skip to main content

Advertisement

Log in

Texture development and slip systems in bridgmanite and bridgmanite + ferropericlase aggregates

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Bridgmanite (Mg,Fe)SiO3 and ferropericlase (Mg,Fe)O are the most abundant phases in the lower mantle and localized regions of the D″ layer just above the core mantle boundary. Seismic anisotropy is observed near subduction zones at the top of the lower mantle and in the D″ region. One source of anisotropy is dislocation glide and associated texture (crystallographic preferred orientation) development. Thus, in order to interpret seismic anisotropy, it is important to understand texture development and slip system activities in bridgmanite and bridgmanite + ferropericlase aggregates. Here we report on in situ texture development in bridgmanite and bridgmanite + ferropericlase aggregates deformed in the diamond anvil cell up to 61 GPa. When bridgmanite is synthesized from enstatite, it exhibits a strong (4.2 m.r.d.) 001 transformation texture due to a structural relationship with the precursor enstatite phase. When bridgmanite + ferropericlase are synthesized from olivine or ringwoodite, bridgmanite exhibits a relatively weak 100 transformation texture (1.2 and 1.6 m.r.d., respectively). This is likely due to minimization of elastic strain energy as a result of Young’s modulus anisotropy. In bridgmanite, 001 deformation textures are observed at pressures <55 GPa. The 001 texture is likely due to slip on (001) planes in the [100], [010] and \(\left\langle {110} \right\rangle\) directions. Stress relaxation by laser annealing to 1500–1600 K does not result in a change in this texture type. However, at pressures >55 GPa a change in texture to a 100 maximum is observed, consistent with slip on the (100) plane. Ferropericlase, when deformed with bridgmanite, does not develop a coherent texture. This is likely due to strain heterogeneity within the softer ferropericlase grains. Thus, it is plausible that ferropericlase is not a significant source of anisotropy in the lower mantle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amodeo J, Carrez P, Cordier P (2012) Modeling the effect of pressure on the critical shear stress of MgO single crystals. Philos Mag 92:1523–1541. doi:10.1080/14786435.2011.652689

    Article  Google Scholar 

  • Carrez P, Ferré D, Cordier P (2007) Peierls-Nabarro model for dislocations in MgSiO3 post-perovskite calculated at 120 GPa from first principles. Philos Mag 87:3229–3247. doi:10.1080/14786430701268914

    Article  Google Scholar 

  • Carter NL (1976) Steady state flow of rocks. Rev Geophys 14:301–360. doi:10.1029/RG014i003p00301

    Article  Google Scholar 

  • Carter NL, Heard HC (1970) Temperature and rate-dependent deformation of halite. Am J Sci 269:193–249. doi:10.2475/ajs.269.3.193

    Article  Google Scholar 

  • Chang S-J, Ferreira AMG, Ritsema J, van Heijst HJ, Woodhouse JH (2014) Global radially anisotropic mantle structure from multiple datasets: a review, current challenges, and outlook. Tectonophysics 617:1–19. doi:10.1016/j.tecto.2014.01.033

    Article  Google Scholar 

  • Chen J, Weidner DJ, Vaughan MT (2002) The strength of Mg0.9Fe0.1SiO3 perovskite at high pressure and temperature. Nature 419:824–826. doi:10.1038/nature01130

    Article  Google Scholar 

  • Cordier P (2002) Dislocations and slip systems of mantle minerals. In: Karato SI, Wenk HR (eds) Plastic deformation of minerals and rocks. Mineralogical Society of America, pp 137–179. doi:10.2138/gsrmg.51.1.137

  • Cordier P, Ungár T, Zsoldos L, Tichy G (2004) Dislocation creep in MgSiO3 perovskite at conditions of the Earth’s uppermost lower mantle. Nature 428:837–840. doi:10.1038/nature02472

    Article  Google Scholar 

  • Cottaar S, Romanowicz B (2013) Observations of changing anisotropy across the southern margin of the African LLSVP. Geophys J Int ggt285. doi:10.1093/gji/ggt285

  • Dawson PR (2002) Modeling deformation of polycrystalline rocks. In: Karato SI, Wenk HR (eds) Plastic deformation of minerals and rocks. Mineralogical Society of America, pp 331–351. doi:10.2138/gsrmg.51.1.331

  • Fei Y, Ricolleau A, Frank M, Mibe K, Shen G, Prakapenka V (2007) Toward an internally consistent pressure scale. Proc Natl Acad Sci 104:9182–9186. doi:10.1073/pnas.0609013104

    Article  Google Scholar 

  • Ferré D, Carrez P, Cordier P (2007) First principles determination of dislocations properties of MgSiO3 perovskite at 30 GPa based on the Peierls-Nabarro model. Phys Earth Planet Inter 163:283–291. doi:10.1016/j.pepi.2007.05.011

    Article  Google Scholar 

  • Girard J, Chen J, Raterron P (2012) Deformation of periclase single crystals at high pressure and temperature: quantification of the effect of pressure on slip-system activities. J Appl Phys 111(11):112607. doi:10.1063/1.4726200

    Article  Google Scholar 

  • Girard J, Amulele G, Farla R, Mohiuddin A, Karato S (2016) Shear deformation of bridgmanite and magnesiowüstite aggregates at lower mantle conditions. Science 351:144–147. doi:10.1126/science.aad3113

    Article  Google Scholar 

  • Gouriet K, Carrez P, Cordier P (2014) Modelling [100] and [010] screw dislocations in MgSiO3 perovskite based on the Peierls–Nabarro–Galerkin model. Model Simul Mater Sci Eng 22:025020. doi:10.1088/0965-0393/22/2/025020

    Article  Google Scholar 

  • Hammersley AP, Svensson SO, Hanfland M, Fitch AN, Hausermann D (1996) Two-dimensional detector software: from real detector to idealised image or two-theta scan. High Press Res 14:235–248. doi:10.1080/08957959608201408

    Article  Google Scholar 

  • Handy MR (1994) Flow laws for rocks containing 2 nonlinear viscous phases: a phenomenological approach. J Struct Geol 16:287–301. doi:10.1016/0191-8141(94)90035-3

    Article  Google Scholar 

  • Heidelbach F, Stretton I, Langenhorst F, Mackwell S (2003) Fabric evolution during high shear strain deformation of magnesiowüstite (Mg0.8Fe0.2O). J Geophys Res Solid Earth 108:2154. doi:10.1029/2001JB001632

    Article  Google Scholar 

  • Hernlund JW, Thomas C, Tackley PJ (2005) A doubling of the post-perovskite phase boundary and structure of the Earth’s lowermost mantle. Nature 434:882–886. doi:10.1038/nature03472

    Article  Google Scholar 

  • Hirel P, Kraych A, Carrez P, Cordier P (2014) Atomic core structure and mobility of [100](010) and [010](100) dislocations in MgSiO3 perovskite. Acta Mater 79:117–125. doi:10.1016/j.actamat.2014.07.001

    Article  Google Scholar 

  • Karato S, Zhang S, Wenk H-R (1995) Superplasticity in Earth’s lower mantle: evidence from seismic anisotropy and rock physics. Science 270:458–461. doi:10.1126/science.270.5235.458

    Article  Google Scholar 

  • Komabayashi T, Hirose K, Nagaya Y, Sugimura E, Ohishi Y (2010) High-temperature compression of ferropericlase and the effect of temperature on iron spin transition. Earth and Planet Sci Lett 297(3–4):691–699. doi:10.1016/j.epsl.2010.07.025

    Article  Google Scholar 

  • Kraych A, Carrez P, Hirel P, Clouet E, Cordier P (2016) Peierls potential and kink-pair mechanism in high-pressure MgSiO3 perovskite: an atomic scale study. Phys Rev B 93:014103. doi:10.1103/PhysRevB.93.014103

    Article  Google Scholar 

  • Kuroda K, Irifune T, Inoue T, Nishiyama N, Miyashita M, Funakoshi K, Utsumi W (2000) Determination of the phase boundary between ilmenite and perovskite in MgSiO3 by in situ X-ray diffraction and quench experiments. Phys Chem Min 27(8):523–532. doi:10.1007/s002690000096

    Article  Google Scholar 

  • Lebensohn RA, Tomé CN (1994) A self-consistent viscoplastic model: prediction of rolling textures of anisotropic polycrystals. Mater Sci Eng A 175:71–82. doi:10.1016/0921-5093(94)91047-2

    Article  Google Scholar 

  • Lebensohn RA, Rollett AD, Suquet P (2011) Fast fourier transform-based modeling for the determination of micromechanical fields in polycrystals. JOM 63:13–18. doi:10.1007/s11837-011-0037-y

    Article  Google Scholar 

  • Lin J-F, Wenk H-R, Voltolini M, Speziale S, Shu J, Duffy T (2009) Deformation of lower-mantle ferropericlase (Mg, Fe)O across the electronic spin transition. Phys Chem Miner 36:585–592. doi:10.1007/s00269-009-0303-5

    Article  Google Scholar 

  • Lundin S, Catalli K, Santillán J, Shim S-H, Prakapenka VB, Kunz M, Meng Y (2008) Effect of Fe on the equation of state of mantle silicate perovskite over 1 Mbar. Phys Earth Planet Inter 168:97–102. doi:10.1016/j.pepi.2008.05.002

    Article  Google Scholar 

  • Lutterotti L, Scardi P (1990) Simultaneous structure and size-strain refinement by the Rietveld method. J Appl Crystallogr 23:246–252. doi:10.1107/S0021889890002382

    Article  Google Scholar 

  • Lutterotti L, Vasin R, Wenk H-R (2014) Rietveld texture analysis from synchrotron diffraction images. I calibration and basic analysis. Powder Diffr 29:76–84. doi:10.1017/S0885715613001346

    Article  Google Scholar 

  • Lynner C, Long MD (2014) Lowermost mantle anisotropy and deformation along the boundary of the African LLSVP. Geophys Res Lett 41(10):3447–3454. doi:10.1002/2014GL059875

  • Mainprice D, Tommasi A, Ferré D, Carrez P, Cordier P (2008) Predicted glide systems and crystal preferred orientations of polycrystalline silicate Mg-Perovskite at high pressure: implications for the seismic anisotropy in the lower mantle. Earth and Planet Sci Lett 271:135–144. doi:10.1016/j.epsl.2008.03.058

    Article  Google Scholar 

  • Marquardt H, Miyagi L (2015) Slab stagnation in the shallow lower mantle linked to an increase in mantle viscosity. Nature Geosci 8:311–314. doi:10.1038/ngeo2393

    Article  Google Scholar 

  • Marquardt H, Speziale S, Reichmann HJ, Frost DJ, Schilling FR (2009) Single-crystal elasticity of (Mg0.9Fe0.1)O to 81 GPa. Earth and Planet Sci Lett 287:345–352. doi:10.1016/j.epsl.2009.08.017

    Article  Google Scholar 

  • Martinez I, Wang Y, Guyot F, Liebermann RC, Doukhan J-C (1997) Microstructures and iron partitioning in (Mg, Fe)SiO3 perovskite-(Mg, Fe)O magnesiowüstite assemblages: an analytical transmission electron microscopy study. J Geophys Res 102:5265–5280. doi:10.1029/96JB03188

    Article  Google Scholar 

  • Matthies S, Humbert M (1993) The Realization of the concept of a geometric mean for calculating physical constants of polycrystalline materials. Phys Status Solidi (b) 177:K47–K50. doi:10.1002/pssb.2221770231

    Article  Google Scholar 

  • Matthies S, Vinel GW (1982) On the reproduction of the orientation distribution function of texturized samples from reduced pole figures using the conception of a conditional ghost correction. Phys Status Solidi (b) 112:K111–K114. doi:10.1002/pssb.2221120254

    Article  Google Scholar 

  • Matthies S, Priesmeyer HG, Daymond MR (2001) On the diffractive determination of single-crystal elastic constants using polycrystalline samples. J Appl Crystallogr 34:585–601. doi:10.1107/S002188980101048

    Article  Google Scholar 

  • Meade C, Jeanloz R (1990) The strength of mantle silicates at high pressures and room temperature: implications for the viscosity of the mantle. Nature 348:533–535. doi:10.1038/348533a0

    Article  Google Scholar 

  • Meade C, Silver PG, Kaneshima S (1995) Laboratory and seismological observations of lower mantle isotropy. Geophys Res Lett 22:1293–1296. doi:10.1029/95GL01091

    Article  Google Scholar 

  • Merkel S, Yagi T (2005) X-ray transparent gasket for diamond anvil cell high pressure experiments. Rev Sci Instrum 76:046109. doi:10.1063/1.1884195

    Article  Google Scholar 

  • Merkel S, Wenk H-R, Shu J, Shen G, Gillet P, Mao H-K, Hemley RJ (2002) Deformation of polycrystalline MgO at pressures of the lower mantle. J Geophys Res 107:2271. doi:10.1029/2001JB000920

    Article  Google Scholar 

  • Merkel S, Wenk H-R, Badro J, Montagnac G, Gillet P, Mao H, Hemley RJ (2003) Deformation of (Mg0.9, Fe0.1)SiO3 Perovskite aggregates up to 32 GPa. Earth Planet Sci Lett 209:351–360. doi:10.1016/S0012-821X(03)00098-0

    Article  Google Scholar 

  • Merkel S, Kubo A, Miyagi L, Speziale S, Duffy TS, Mao H-K, Wenk H-R (2006) Plastic Deformation of MgGeO3 Post-Perovskite at Lower Mantle Pressures. Science 311(5761):644–646. doi:10.1126/science.1121808

    Article  Google Scholar 

  • Miyagi L, Kunz M, Knight J, Nasiatka J, Voltolini M, Wenk H-R (2008) In situ phase transformation and deformation of iron at high pressure and temperature. J Appl Phys 104:103510–103519. doi:10.1063/1.3008035

    Article  Google Scholar 

  • Miyagi L, Kanitpanyacharoen W, Stackhouse S, Militzer B, Wenk H-R (2011) The enigma of post-perovskite anisotropy: deformation versus transformation textures. Phys Chem Miner 38:665–678. doi:10.1007/s00269-011-0439-y

    Article  Google Scholar 

  • Miyagi L, Amulele G, Otsuka K, Du Z, Farla R, Karato S-I (2014) Plastic anisotropy and slip systems in ringwoodite deformed to high shear strain in the Rotational Drickamer Apparatus. Phys Earth Planet Inter High-Press Res Earth Sci Crust Mantle Core 228:244–253. doi:10.1016/j.pepi.2013.09.012

    Google Scholar 

  • Miyajima N, Yagi T, Ichihara M (2009) Dislocation microstructures of MgSiO3 perovskite at a high pressure and temperature condition. Phys Earth Planet Inter 174:153–158. doi:10.1016/j.pepi.2008.04.004

    Article  Google Scholar 

  • Murakami M, Hirose K, Kawamura K, Sata N, Ohishi Y (2004) Post-perovskite phase transition in MgSiO3. Science 304:855–858. doi:10.1126/science.1095932

    Article  Google Scholar 

  • Murakami M, Sinogeikin SV, Bass JD, Sata N, Ohishi Y, Hirose K (2007) Sound velocity of MgSiO3 post-perovskite phase: a constraint on the D″ discontinuity. Earth Planet Sci Lett 259:18–23. doi:10.1016/j.epsl.2007.04.015

    Article  Google Scholar 

  • Navrotsky A, Weidner DJ (eds) (1989) Perovskite: a structure of great interest to geophysics and materials science. Geophysical Monograph 45, American Geophysical Union, Washington DC

  • Oganov AR, Ono S (2004) Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s D″ layer. Nature 430:445–448. doi:10.1038/nature02701

    Article  Google Scholar 

  • Okada T, Yagi T, Niwa K, Kikegawa T (2010) Lattice-preferred orientations in post-perovskite-type MgGeO3 formed by transformations from different pre-phases. Phys Earth Planet Inter 180(3–4):195–202. doi:10.1016/j.pepi.2009.08.002

    Article  Google Scholar 

  • Shim S-H, Duffy TS, Jeanloz R, Shen G (2004) Stability and crystal structure of MgSiO3 perovskite to the core-mantle boundary. Geophys Res Lett 31:L10603. doi:10.1029/2004GL019639

    Article  Google Scholar 

  • Singh AK (1993) The lattice strains in a specimen (cubic system) compressed nonhydrostatically in an opposed anvil device. J Appl Phys 73:4278–4286. doi:10.1063/1.352809

    Article  Google Scholar 

  • Stretton I, Heidelbach F, Mackwell S, Langenhorst F (2001) Dislocation creep of magnesiowüstite (Mg0.8Fe0.2O). Earth Planet Sci Lett 194(1–2):229–240. doi:10.1016/S0012-821X(01)00533-7

    Article  Google Scholar 

  • Toby BH (2006) R factors in Rietveld analysis: How good is good enough? Powder Diffr 21(1):67–70. doi:10.1154/1.2179804

    Article  Google Scholar 

  • Tommaseo C, Devine J, Merkel S, Speziale S, Wenk H-R (2006) Texture development and elastic stresses in magnesiowűstite at high pressure. Phys Chem Miner 33(2):84–97. doi:10.1007/s00269-005-0054-x

    Article  Google Scholar 

  • Vinnik L, Romanowicz B, Le Stunff Y, Makeyeva L (1995) Seismic anisotropy in the D″ layer. Geophys Res Lett 22:1657–1660. doi:10.1029/95GL01327

    Article  Google Scholar 

  • Walte N, Heidelbach F, Miyajima N, Frost D (2007) Texture development and TEM analysis of deformed CaIrO3: implications for the D″ layer at the core-mantle boundary. Geophys Res Lett 34(8):L08306. doi:10.1029/2007GL029407

    Article  Google Scholar 

  • Wang Y, Guyot F, Yeganeh-Haeri A, Liebermann RC (1990) Twinning in MgSiO3 perovskite. Sci 248:468–471. doi:10.1126/science.248.4954.468

    Article  Google Scholar 

  • Wang Y, Guyot F, Liebermann RC (1992) Electron microscopy of (Mg, Fe)SiO3 perovskite: evidence for structural phase transitions and implications for the lower mantle. J Geophys Res 97:12327–12347. doi:10.1029/92JB00870

    Article  Google Scholar 

  • Wang Y, Hilairet N, Nishiyama N, Yahata N, Tsuchiya T, Morard G, Fiquet G (2013) High-pressure, high-temperature deformation of CaGeO3 (perovskite) ± MgO aggregates: implications for multiphase rheology of the lower mantle. Geochem Geophys Geosyst 14(9):3389–3408. doi:10.1002/ggge.20200

    Article  Google Scholar 

  • Wang X, Tsuchiya T, Hase A (2015) Computational support for a pyrolitic lower mantle containing ferric iron. Nature Geosci 8(7):556–559. doi:10.1038/ngeo2458

    Article  Google Scholar 

  • Wenk HR, Matthies S, Donovan J, Chateigner D (1998) BEARTEX: a Windows-based program system for quantitative texture analysis. J Appl Crystallogr 31:262–269. doi:10.1107/S002188989700811X

    Article  Google Scholar 

  • Wenk H-R, Lonardelli I, Pehl J, Devine JM, Prakapenka VB, Shen G, Mao H (2004) In situ observation of texture development in olivine, ringwoodite, magnesiowustite and silicate perovskite at high pressure. Earth Planet Sci Lett 226:507–519. doi:10.1016/j.epsl.2004.07.033

    Article  Google Scholar 

  • Wenk H-R, Lonardelli I, Merkel S, Miyagi L, Pehl J, Speziale S, Tommaseo CE (2006a) Deformation textures produced in diamond anvil experiments, analysed in radial diffraction geometry. J Phys Condens Matter 18:S933–S947. doi:10.1088/0953-8984/18/25/S02

    Article  Google Scholar 

  • Wenk H-R, Speziale S, McNamara AK, Garnero EJ (2006b) Modeling lower mantle anisotropy development in a subducting slab. Earth Planet Sci Lett 245:302–314. doi:10.1016/j.epsl.2006.02.028

    Article  Google Scholar 

  • Wenk H-R, Lutterotti L, Kaercher P, Kanitpanyacharoen W, Miyagi L, Vasin R (2014) Rietveld texture analysis from synchrotron diffraction images. II. Complex multiphase materials and diamond anvil cell experiments. Powder Diffr 29:220–232. doi:10.1017/S0885715614000360

    Article  Google Scholar 

  • Wentzcovitch RM, Karki BB, Karato S, Da Silva CRS (1998) High pressure elastic anisotropy of MgSiO3 perovskite and geophysical implications. Earth Planet Sci Lett 164:371–378. doi:10.1016/S0012-821X(98)00230-1

    Article  Google Scholar 

  • Wookey J, Kendall J-M, Barruol G (2002) Mid-mantle deformation inferred from seismic anisotropy. Nature 415:777–780. doi:10.1038/415777a

    Article  Google Scholar 

  • Yamazaki D, Karato S (2002) Fabric development in (Mg, Fe)O during large strain, shear deformation: implications for seismic anisotropy in Earth’s lower mantle. Phys Earth Planet Inter 131(3–4):251–267. doi:10.1016/S0031-9201(02)00037-7

    Article  Google Scholar 

Download references

Acknowledgments

Portion of this work was performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. HPCAT is supported by DOE-BES, DOE-NNSA, NSF, and the W.M. Keck Foundation. APS is supported by DOE-BES, under Contract No. DE-AC02-06CH11357. Remaining portions of this work were performed at the Advanced Light Source (ALS). The ALS is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. COMPRES, the Consortium for Materials Properties Research in Earth Sciences under NSF Cooperative Agreement EAR 01-35554 supported this project through funding crucial beamline equipment. LM acknowledges support from CDAC and NSF (EAR-0337006). HRW acknowledges support from NSF (EAR-1343908, CSEDI 1067513). We acknowledge help from beamline scientists, particularly Y. Meng at APS and M. Kunz at ALS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Miyagi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 345 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyagi, L., Wenk, HR. Texture development and slip systems in bridgmanite and bridgmanite + ferropericlase aggregates. Phys Chem Minerals 43, 597–613 (2016). https://doi.org/10.1007/s00269-016-0820-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-016-0820-y

Keywords

Navigation