Physics and Chemistry of Minerals

, Volume 38, Issue 3, pp 203–214

Phase relations in Fe–Ni–C system at high pressures and temperatures

Authors

    • Bayerisches GeoinstitutUniversität Bayreuth
    • SUPA, School of Physics and Centre for Science at Extreme ConditionsThe University of Edinburgh
  • L. S. Dubrovinsky
    • Bayerisches GeoinstitutUniversität Bayreuth
  • N. Miyajima
    • Bayerisches GeoinstitutUniversität Bayreuth
  • C. A. McCammon
    • Bayerisches GeoinstitutUniversität Bayreuth
  • I. Yu. Kantor
    • Bayerisches GeoinstitutUniversität Bayreuth
    • European Synchrotron Radiation Facility
  • M. Mezouar
    • European Synchrotron Radiation Facility
  • V. B. Prakapenka
    • Center for Advanced Radiation SourcesUniversity of Chicago
  • N. A. Dubrovinskaia
    • Bayerisches GeoinstitutUniversität Bayreuth
    • Institut für GeowissenschaftenUniversität Heidelberg
  • V. Dmitriev
    • European Synchrotron Radiation Facility
Original Paper

DOI: 10.1007/s00269-010-0396-x

Cite this article as:
Narygina, O., Dubrovinsky, L.S., Miyajima, N. et al. Phys Chem Minerals (2011) 38: 203. doi:10.1007/s00269-010-0396-x

Abstract

We performed comparative study of phase relations in Fe1−xNix (0.10 ≤ x ≤ 0.22 atomic fraction) and Fe0.90Ni0.10−xCx (0.1 ≤ x ≤ 0.5 atomic fraction) systems at pressures to 45 GPa and temperatures to 2,600 K using laser-heated diamond anvil cell and large-volume press (LVP) techniques. We show that laser heating of Fe,Ni alloys in DAC even to relatively low temperatures can lead to the contamination of the sample with the carbon coming from diamond anvils, which results in the decomposition of the alloy into iron- and nickel-rich phases. Based on the results of LVP experiments with Fe–Ni–C system (at pressures up to 20 GPa and temperatures to 2,300 K) we demonstrate decrease of carbon solubility in Fe,Ni alloy with pressure.

Keywords

LH-DACLarge-volume pressMartensitic transformationCarbon solubility in Fe,Ni alloy

Supplementary material

269_2010_396_MOESM1_ESM.doc (152 kb)
Supplementary material (PDF 65 kb)

Copyright information

© Springer-Verlag 2010