, Volume 33, Issue 4, pp 716-722

Improved Diagnosis of Pancreatic Adenocarcinoma Using Haptoglobin and Serum Amyloid A in a Panel Screen

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Background

Timely, accurate diagnosis of pancreatic adenocarcinoma (PA) is hampered by the lack of effective circulating biomarkers. No single test has emerged that improves upon the commonly used biomarker cancer antigen 19–9 (CA 19–9) to discriminate PA from benign conditions effectively. The goals of this study were to validate two acute-phase proteins, haptoglobin and serum amyloid A (SAA), as biomarkers for PA and determine if the combination of haptoglobin, SAA, and CA 19–9 would improve PA diagnosis over CA 19–9 alone.

Methods

Levels of haptoglobin, SAA, and CA 19–9 were measured in pretreatment sera from 75 PA patients, 32 patients with chronic pancreatitis, 42 patients with other benign pancreatic disease or biliary stricture, and 150 healthy control subjects by enzyme-linked immunosorbent assay or colorimetric binding assay. Relative levels of haptoglobin or SAA were compared between groups using analysis of variance. The diagnostic accuracy of serum haptoglobin and SAA levels were investigated using receiver operating characteristics (ROC) analysis. Using classification tree analysis, an algorithm was developed that used haptoglobin, SAA, and CA 19–9 in a diagnostic screening panel.

Results

Both haptoglobin and SAA were significantly elevated in sera from PA patients compared to healthy control subjects (p < 0.0001) and patients with chronic pancreatitis (p = 0.01). Haptoglobin was significantly elevated in sera from PA patients relative to patients with other benign diseases (p = 0.0015), whereas SAA fell short of significance in the same comparison (p = 0.0508). ROC analysis indicated that haptoglobin [area under the curve (AUC) = 0.792] was a better diagnostic marker than SAA (AUC = 0.691) over multiple threshold cutoffs. Using specific cutoffs that minimized overall misclassification, haptoglobin yielded a sensitivity of 82.7% and a specificity of 71.1%, and SAA yielded a sensitivity of 34.7% and a specificity of 90.2% when discriminating PA cases from all non-PA controls. In the same sample set, CA 19–9 yielded a sensitivity of 77.3% and a specificity of 91.1%. Combining data from haptoglobin, SAA, and CA 19–9 in a diagnostic screening panel improved the overall accuracy when compared to CA 19–9 alone, yielding a sensitivity of 81.3% and a specificity of 95.5%.

Conclusions

These data demonstrate that haptoglobin and SAA are useful for discriminating PA from benign conditions as well as healthy controls when used in a diagnostic screening panel. This study supports the use of combined biomarkers for improved accuracy in the diagnosis of PA.

These data were presented at the Molecular Surgeon Symposium on Personalized Genomic Medicine and Surgery at the Baylor College of Medicine, Houston, Texas on April 12, 2008. The symposium was supported by a grant from the National Institutes of Health (R13 CA132572 to Changyi Chen).