Skip to main content
Log in

Dispersal and mating in a size-dimorphic ant

  • Original Article
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Alternative reproductive strategies linked to size are often connected with differences in dispersal and mating behaviour. Temporal and spatial mating isolation of different sized individuals can lead to size-assortative mating, which may maintain intraspecific size polymorphism. In the size-dimorphic ant Myrmica ruginodis, newly produced sexuals of the larger macrogyne morph join nuptial flights to mate, but mating behaviour of the smaller microgyna females remains elusive and even less is known about males. In this study, we examined the differences in dispersal strategies of the two size morphs as a possible mechanism causing reproductive isolation between them. We developed a new method for sampling sexuals dispersing from their nests, and sampled also mating couples and random males from a nearby mating site. We studied propensity and timing of dispersal and assortative mating of the size morphs based on their expected and observed participation in the nuptial flight. Our study shows that predominantly, macrogynes participate in the nuptial flight, while microgynes stay close to their natal nest. However, dispersal is not associated with male size, and larger males, preferred by all females, are available for both morphs. Size-assortative mating, mainly caused by macrogynes mating with large males, exists at the nuptial flight and should promote mating isolation of the size morphs, but microgynes counterbalance this to a certain degree by mating with large males. Size-associated alternative dispersal strategies in size polymorphic species provide insight into the mechanisms enhancing genetic divergence, a potential early step in the speciation process.

Significance statement

We studied the association between size and dispersal in the size-dimorphic ant Myrmica ruginodis, to evaluate potential premating isolation between the morphs. To date, there is a shortage of studies on mating and dispersal behaviour of ants in natural settings. We captured dispersing sexuals from their natal nests, separating those dispersing on foot or by flight—a technique never applied to dispersing ants before—and assessed mate selection at the mating swarm. We found that dispersal propensity depends on the size of the females (but not males) so that the larger macrogyne morph joins a nuptial flight and the smaller microgyne morph rarely does. Furthermore, macrogyna females actively choose to mate with large males causing size-assortative mating, creating partial mating isolation between the size morphs and opening a possibility for genetic divergence between the morphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abell AJ, Cole BJ, Reyes R, Wiernasz DC (1999) Sexual selection on body size and shape in the western harvester ant, Pogonomyrmex occidentalis Cresson. Evolution 53(2):535–45

  • Abramoff MD, Magalhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophoton Int 11(7):36–42

    Google Scholar 

  • Altizer S, Davis AK (2010) Populations of monarch butterflies with different migratory behaviors show divergence in wing morphology. Evolution 64(4):1018–1028

    Article  PubMed  Google Scholar 

  • Anholt BR (1990) Size-biased dispersal prior to breeding in a damselfly. Oecologia 83:385–387

    Article  Google Scholar 

  • Barbraud C, Johnson AR, Bertault G (2003) Phenotypic correlates of post-fledging dispersal in a populations of greater flamingos: the importance of body condition. J Anim Ecol 72:246–257

    Article  Google Scholar 

  • Blem CR (1980) The energetics of migration. In: Gauthreaux SA (ed) Animal migration, orientation and navigation. Academic, New York, pp p.175–224

    Google Scholar 

  • Boomsma JJ, Huszár DB, Pedersen JS (2014) The evolution of multiqueen breeding in eusocial lineages with permanent physically differentiated castes. Anim Behav 92:241–252

    Article  Google Scholar 

  • Bourke AF, Franks NR (1995) Social evolution in ants. Princeton University Press, Princeton, NJ, p 529

    Google Scholar 

  • Bourke AFG, Heinze J (1994) The ecology of communal breeding: the case of multiple-queen leptothoracine ants. Phil Trans R Soc Lond B 345:359–372

    Article  Google Scholar 

  • Brian MV, Brian AD (1949) Observations on the taxonomy of the ants Myrmica rubra L. and M. laevinodis Nylander (Hymenoptera: Formicidae.). Trans Royal Entomol Soc Lond 100(14):393–409

    Article  Google Scholar 

  • Brian MV, Brian A (1955) On the 2 forms macrogyna and microgyna of the ant Myrmica rubra L. Evolution 9:280–290

    Article  Google Scholar 

  • Buschinger A (1997) Vorkommen der sozialparasitischen Ameise Myrmica microrubra in Hessen (Hymenoptera, Formicidae). Hessische Faunistische Briefe 16:49–57

    Google Scholar 

  • Crespi BJ (1988) Adaptation, compromise, and constraint: the development, morphometrics, and behavioral basis of a fighter-flier polymorphism in male Hoplothrips karnyi (Insecta: Thysanoptera). Behav Ecol Sociobiol 23(2):93–104

    Article  Google Scholar 

  • Danforth BN (1991) The morphology and behavior of dimorphic males in Perdita portalis (Hymenoptera: Andrenidae). Behav Ecol Sociobiol 29(4):235–247

    Article  Google Scholar 

  • Derr JA, Alden B, Dingle H (1981) Insect life histories in relation to migration, body size, and host plant array: a comparative study of Dysdercus. J Animal Ecol 50:181–194

    Article  Google Scholar 

  • Dingle H (1989) The evolution and significance of migratory flight. In: Goldsworthy GJ, Wheeler CH (eds) Insect flight. CRC Press, Inc, Boca Raton, FL, p Pp. 371

    Google Scholar 

  • Dingle H, Blakley NR, Miller ER (1980) Variation in body size and flight performance in milkweed bugs (Oncopeltus). Evolution 34:371–385

    Article  Google Scholar 

  • Eberhard WG (1980) Horned beetles. Sci Am 242:166–182

    Article  Google Scholar 

  • Elmes GW (1991) Mating strategy and isolation between the 2 forms, macrogyna and microgyna, of Myrmica ruginodis (Hym Formicidae). Ecol Entomol 16:411–423

    Article  Google Scholar 

  • Fernández-Escudero I, Seppä P, Pamilo P (2001) Dependent nest founding in the ant Proformica longiseta. Insect Soc 48:80–82

    Article  Google Scholar 

  • Garant D, Kruuk LE, Wilkin TA, McCleery RH, Sheldon BC (2005) Evolution driven by differential dispersal within a wild bird population. Nature 433(7021):60–65

    Article  CAS  PubMed  Google Scholar 

  • Gonzaga MDO, Vasconcellos-Neto J (2001) Female body size, fecundity parameters and foundation of new colonies in Anelosimus jabaquara (Araneae, Theridiidae). Insect Soc 48(2):94–100

    Article  Google Scholar 

  • Greenwood BYPJ (1980) Mating systems, philopatry and dispersal in birds and mammals. Anim Behav 28:1140–1162

    Article  Google Scholar 

  • Gross MR (1985) Disruptive selection for alternative life histories in salmon. Nature 313:47–48

    Article  Google Scholar 

  • Gundersen G, Andreassen HP, Ims RA (2002) Individual and population level determinants of immigration success on local habitat patches: an experimental approach. Ecol Lett 5:294–301

    Article  Google Scholar 

  • Haag CR, Saastamoinen M, Marden JH, Hanski I (2005) A candidate locus for variation in dispersal rate in a butterfly metapopulation. Proc R Soc Lond B Biol Sci 272(1580):2449–2456

    Article  Google Scholar 

  • Hainsworth FR (1981) Animal physiology: adaptations in function. Addison-Wesley, Reading. Mass

  • Hansen TA (1980) Influence of larval dispersal and geographic distribution on species longevity in neogastropods. Paleobiology 6:193–207

    Google Scholar 

  • Hanski I, Peltonen A, Kaski L (1991) Natal dispersal and social dominance in the common shrew Sorex araneus. Oikos:48–58

  • Hardy OJ, Pearcy M, Aron S (2008) Small‐scale spatial genetic structure in an ant species with sex‐biased dispersal. Biol J Linn Soc 93(3):465–73

    Article  Google Scholar 

  • Hawkes C (2009) Linking movement behaviour, dispersal and population processes: is individual variation a key? J Anim Ecol 78:894–906

    Article  PubMed  Google Scholar 

  • Heinze J, Keller L (2000) Alternative reproductive strategies: a queen perspective in ants. Trends Ecol Evol 15(12):508–512

    Article  PubMed  Google Scholar 

  • Heinze J, Tsuji K (1995) Ant reproductive strategies. Res Popul Ecol 37:135–149

    Article  Google Scholar 

  • Helft F, Monnin T, Doums C (2015) First evidence of inclusive sexual selection in the ant Cataglyphis cursor: worker aggressions differentially affect male access to virgin queens. Ethology 121(7):641–50

    Article  Google Scholar 

  • Herbers JM (1993) Ecological determinants of queen number in ants. In L Keller (ed) Queen number and sociality in insects. Oxford University Press, Pp.263-293

  • Hölldobler B, Bartz SH (1985) Sociobiology of reproduction in ants. In: Hölldobler B, Lindauer M (eds) Experimental behavioral ecology and sociobiology. G. Fisher Verlag, Stuttgart, New York, pp 237–257

    Google Scholar 

  • Hölldobler B, Wilson EO (1977) The number of queens: an important trait in ant evolution. Naturwissenschaften 64(1):8–15

    Article  Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. The Belknap Press of Harvard University Press, Cambridge

    Book  Google Scholar 

  • Jablonski D (1986) Larval ecology and macroevolution in marine invertebrates. Bull Mar Sci 39:565–587

    Google Scholar 

  • Johnson ML, Gaines MS (1990) Evolution of dispersal: theoretical models and empirical tests using birds and mammals. Annu Rev Ecol Syst 21:449–480

    Article  Google Scholar 

  • Keller L (1993) Queen number and sociality in insects. Oxford University, Oxford, pp 16–44

    Google Scholar 

  • Keller L, Passera L (1989) Size and fat content of gynes in relation to the mode of colony founding in ants (Hymenoptera; Formicidae). Oecologia 80:236–240

    Article  Google Scholar 

  • Kikuchi T (2002) Between‐and within‐population morphological comparisons of all castes between monogynous and polygynous colonies of the ant Myrmica kotokui. Ecol Entomol 27(4):505–508

    Article  Google Scholar 

  • Kondrashov AS, Kondrashov FA (1999) Interactions among quantitative traits in the course of sympatric speciation. Nature 400:351–354

    Article  CAS  PubMed  Google Scholar 

  • Latta RG, Linhart YB, Fleck D, Elliot M (1998) Direct and indirect estimates of seed versus pollen movement within a population of ponderosa pine. Evolution 52:61–67

    Article  Google Scholar 

  • Lawrence WS (1987) Dispersal: an alternative mating tactic conditional on sex ratio and body size. Behav Ecol Sociobiol 21(6):367–373

    Article  Google Scholar 

  • Lemel JY, Belichon S, Clobert J, Hochberg ME (1997) The evolution of dispersal in a two-patch system: some consequences of differences between migrants and residents. Evol Ecol 11:613–629

    Article  Google Scholar 

  • Léna JP, Clobert J, De Fraipont M, Lecomte J, Guyot G (1998) The relative influence of density and kinship on dispersal in the common lizard. Behav Ecol 9:500–507

    Article  Google Scholar 

  • Lenoir J, Lachaud J, Nettel A, Fresneau D, Poteaux C (2011) The role of microgynes in the reproductive strategy of the neotropical ant Ectatomma ruidum. Naturwissenschaften 98:347–356

    Article  CAS  PubMed  Google Scholar 

  • Leppänen J, Seppä P, Vepsäläinen K, Savolainen R (2015) Genetic divergence between the sympatric queen morphs of the ant Myrmica rubra. Mol Ecol 24(10):2463–2476

    Article  PubMed  Google Scholar 

  • Leppänen J, Seppä P, Vepsäläinen K, Savolainen R (2016) Mating isolation between the ant Myrmica rubra and its microgynous social parasite. Insect Soc 63(1):79–86

    Article  Google Scholar 

  • Matthysen E (2012) Multicausality of dispersal. In: Clobert J, Baguette M, Benton TG, Bullock JM (eds) Dispersal Ecology and Evolution. Oxford University Press

  • O’Riain MJ, Jarvis JUM, Faulkes CG (1996) A dispersive morph in the naked mole-rat. Nature 380:619–621

    Article  PubMed  Google Scholar 

  • Palmer JO (1985) Ecological genetics of wing length, flight propensity, and early fecundity in a migratory insect. Contributions in Marine Science 68

  • Palumbi SR (1992) Marine speciation on a small planet. Trends Ecol Evol 7:114–118

    Article  CAS  PubMed  Google Scholar 

  • Passera L, Keller L (1990) Loss of mating flight and shift in the pattern of carbohydrate storage in sexuals of ants (Hymenoptera; Formicidae). J Comp Physiol B 160(2):207–211

    Article  CAS  Google Scholar 

  • Passera L, Keller L (1994) Mate availability and male dispersal in the Argentine ant Linepithema humile (Mayr) (= Iridomyrmex humilis). Anim Behav 48(2):361–369

    Article  Google Scholar 

  • R Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/

  • Richmond JQ, Jockusch EL, Latimer AM (2011) Mechanical reproductive isolation facilitates parallel speciation in western North American scincid lizards. Am Nat 178(3):320–332

    Article  PubMed  Google Scholar 

  • Roff DA, Fairbairn DJ (1991) Wing dimorphisms and the evolution of migratory polymorphisms among the Insecta. Am Zool 31(1):243–251

    Article  Google Scholar 

  • Rüppell O, Heinze J (1999) Alternative reproductive tactics in females: the case of size polymorphism in winged ant queens. Insectes Soc 46:6–17

    Article  Google Scholar 

  • Rüppell O, Heinze J, Hölldobler B (1998) Size-dimorphism in the queens of the North American ant Leptothorax rugatulus (Emery). Insect Soc 45(1):67–77

    Article  Google Scholar 

  • Rüppell O, Heinze J, Hölldobler B (2001) Alternative reproductive tactics in the queen-size-dimorphic ant Leptothorax rugatulus (Emery) and their consequences for genetic population structure. Behav Ecol Sociobiol 50:189–197

    Article  Google Scholar 

  • Schlick‐Steiner BC, Steiner FM, Sanetra M, Seifert B, Christian E, Stauffer C (2007) Lineage specific evolution of an alternative social strategy in Tetramorium ants (Hymenoptera: Formicidae). Biol J Linn Soc 91(2):247–55

    Article  Google Scholar 

  • Schwander T, Suni SS, Cahan SH, Keller L (2008) Mechanisms of reproductive isolation between an ant species of hybrid origin and one of its parents. Evolution 62(7):1635–43

    Article  PubMed  Google Scholar 

  • Seifert B (2007) Die Ameisen Mittel- und Nordeuropas. Lutra Verlags- und Vertriebsgesellschaft, Tauer

  • Seppä P (1992) Genetic relatedness of worker nestmates in Myrmica ruginodis (Hymenoptera: Formicidae) populations. Behav Ecol Sociobiol 30:253–260

    Article  Google Scholar 

  • Seppä P (1994) Sociogenetic organization of the ants Myrmica ruginodis and Myrmica lobicornis: number, relatedness and longevity of reproducing individuals. J Evol Biol 7:71–95

    Article  Google Scholar 

  • Seppä P (2008) Do ants (Hymenoptera: Formicidae) need conservation and does ant conservation need genetics? Myrmecol News 11:161–172

    Google Scholar 

  • Seppä P, Pamilo P (1995) Gene flow and population viscosity in Myrmica ants. Heredity 74(2):200–209

    Article  Google Scholar 

  • Slatkin M (1985) Gene flow in natural populations. Annu Rev Ecol Syst 16:393–430

    Article  Google Scholar 

  • Stille M (1996) Queen/worker thorax volume ratios and nest-founding strategies in ants. Oecologia 105(1):87–93

    Article  Google Scholar 

  • Sundström L (1995) Dispersal polymorphism and physiological condition of males and females in the ant, Formica truncorum. Behav Ecol 6(2):132–139

    Article  Google Scholar 

  • Sundström L, Seppä P, Pamilo P (2005) Genetic population structure and dispersal patterns in Formica ants—a review. Annales Zoological Fennici 163–177

  • Thornhill R, Alcock J (1983) The evolution of insect mating systems. Harvard University Press

  • Tinaut A, Ruano F (1992) Braquipterismo y Apterismo en Formicoidos, Morfologia y Biometria en las Hembras de Especies Ibericas de Vida Libre (Hymenoptera: Formicidae). Graellsia 48:121–131

    Google Scholar 

  • Walin L, Seppä P (2001) Resource allocation in the red ant Myrmica ruginodis—an interplay of genetics and ecology. J Evol Biol 14(5):694–707

    Article  Google Scholar 

  • Waser PM (1985) Does competition drive dispersal? Ecology 66(4):1170–1175

    Article  Google Scholar 

  • Wiernasz DC, Yencharis J, Cole BJ (1995) Size and mating success in males of the western harvester ant, Pogonomyrmex occidentalis (Hymenoptera: Formicidae). J Insect Behav 8(4):523–31

    Article  Google Scholar 

  • Wolf JI, Seppä P (2016) Queen size dimorphism in social insects. Insect Soc 63(1):25–38

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Academy of Finland (Centre of Excellence in Biological Interactions, grant nos. 251337 and 284666). We thank Heini Ali-Kovero for the help in the lab and Joni Ollonen, Hanna Parri, and Francisko De Moraes Rezende for their help in the field. We also thank Dimitri Stucki for valuable advice on statistics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Irina Wolf.

Additional information

Communicated by J. Heinze

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLSX 19 kb)

ESM 2

(PDF 163 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolf, J.I., Seppä, P. Dispersal and mating in a size-dimorphic ant. Behav Ecol Sociobiol 70, 1267–1276 (2016). https://doi.org/10.1007/s00265-016-2135-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-016-2135-x

Keywords

Navigation