Skip to main content

Advertisement

Log in

Soldier production in a stingless bee depends on rearing location and nurse behaviour

  • Original Paper
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

The spectacular morphological variation among workers of certain ant and termite species has fascinated evolutionary biologists since Darwin. In some species, environmental triggers induce larvae to develop into different phenotypes, e.g. minor or major workers (soldiers). Recently, the first soldier subcaste was discovered in a bee, the stingless bee Tetragonisca angustula. In contrast to ants, which raise their offspring by progressively feeding larvae until the pupal stage, T. angustula nurses mass provision individual brood cells after which the bees develop from egg to young workers in sealed cells on a seemingly uniform brood comb. This prompts the question of how this bee creates a morphologically variable workforce without larvae having direct contact with nursing workers. We investigated where T. angustula raises a larger soldier subcaste on its compact brood comb. Additionally, we examined whether size differences among workers could be generated by differential distribution of food by nursing workers. We found that colonies produce c. 1–6 % of soldier-sized workers, which mainly emerge from a small central area of the comb. In this area, cells are wider and a larger number of nursing bees unload larval food here before oviposition. Cell attendance levels prior to oviposition were similar across the comb and, thus, did not explain the larger food volumes found in the centre. Our results suggest that workers determine soldier production via larval food discharges and cell-building behaviour. Nutritional differences among larvae might then induce larvae into one or the other caste developmental pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson C, McShea DW (2001) Individual versus social complexity, with particular reference to ant colonies. Biol Rev 76:211–237

    Article  CAS  PubMed  Google Scholar 

  • Bego LR, Grosso AF, Zucchi R, Sakagami SF (1999) Oviposition behavior of the stingless bees XXIV. Ethological relationships of Tetragonisca angustula angustula to other Meliponinae taxa (Apidae: Meliponinae). Entomol Sci 2:473–482

    Google Scholar 

  • Couvillon MJ, Dornhaus A (2009) Location, location, location: larvae position inside the nest is correlated with adult body size in worker bumble-bees (Bombus impatiens). Proc R Soc B 276:2411–2418

    Article  PubMed Central  PubMed  Google Scholar 

  • Couvillon MJ, Segers FHID, Cooper-Bowman R, Truslove G et al (2013) Context affects nestmate recognition errors in honey bees and stingless bees. J Exp Biol 216:3055–3061

    Article  PubMed  Google Scholar 

  • Emlen DJ, Nijhout HF (2000) The development and evolution of exaggerated morphologies in insects. Annu Rev Entomol 45:661–708

    Article  CAS  PubMed  Google Scholar 

  • Evans JD, Wheeler DE (2001) Gene expression and the evolution of insect polyphenisms. Bioessays 23:62–68

    Article  CAS  PubMed  Google Scholar 

  • Evison SEF, Hughes WO (2011) Genetic caste polymorphism and the evolution of polyandry in Atta leaf-cutting ants. Naturwissenschaften 98:643–649

    Article  CAS  PubMed  Google Scholar 

  • Fjerdingstad EJ, Crozier RH (2006) The evolution of worker caste diversity in social insects. Am Nat 167:390–400

    Article  PubMed  Google Scholar 

  • Goulson D (2010) Bumblebees: behaviour, ecology, and conservation (No. Ed. 2). Oxford University Press.

  • Goulson D, Derwent LC, Peat J (2005) Evidence for alloethism in stingless bees (Meliponinae). Apidologie 36:411–412

    Article  Google Scholar 

  • Grüter C, Kärcher MH, Ratnieks FLW (2011) The natural history of nest defence in a stingless bee, Tetragonisca angustula (Latreille) (Hymenoptera: Apidae), with two distinct types of entrance guards. Neotrop Entomol 40:55–61

    Article  PubMed  Google Scholar 

  • Grüter C, Menezes C, Imperatriz-Fonseca VL, Ratnieks FL (2012) A morphologically specialized soldier caste improves colony defense in a neotropical eusocial bee. Proc Natl Acad Sci 109:1182–1186

    Article  PubMed Central  PubMed  Google Scholar 

  • Hartfelder K, Makert GR, Judice CC, Pereira GA, Santana WC, Dallacqua R, Bitondi MM (2006) Physiological and genetic mechanisms underlying caste development, reproduction and division of labor in stingless bees. Apidologie 37:144

    Article  CAS  Google Scholar 

  • Harvell CD (1994) The evolution of polymorphism in colonial invertebrates and social insects. Q Rev Biol 69:155–185

    Article  Google Scholar 

  • Hasegawa E (1997) The optimal caste ratio in polymorphic ants: estimation and empirical evidence. Am Nat 706–722

  • Hölldobler B, Wilson EO (1990) The ants. Harvard Belknap, Cambridge

    Book  Google Scholar 

  • Huang ZY, Otis GW (1991) Inspection and feeding of larvae by worker honey bees (Hymenoptera: Apidae): effect of starvation and food quantity. J Insect Behav 4:305–317

    Article  Google Scholar 

  • Hughes WO, Sumner S, Van Borm S, Boomsma JJ (2003) Worker caste polymorphism has a genetic basis in Acromyrmex leaf-cutting ants. Proc Natl Acad Sci 100:9394–9397

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jandt JM, Dornhaus A (2009) Spatial organization and division of labour in the bumblebee Bombus impatiens. Anim Behav 77:641–651

    Article  Google Scholar 

  • Jones SM, van Zweden JS, Grüter C, Menezes C et al (2012) The role of wax and resin in the nestmate recognition system of a stingless bee, Tetragonisca angustula. Behav Ecol Sociobiol 66:1–12

    Article  Google Scholar 

  • Koedam D, Broné M, van Tienen PGM (1997) The regulation of worker-oviposition in the stingless bee Trigona (Tetragonisca) angustula Illiger (Apidae, Meliponinae). Insects Soc 44:229–244

    Article  Google Scholar 

  • Lefeuve P, Bordereau C (1984) Soldier formation regulated by a primer pheromone from the soldier frontal gland in a higher termite, Nasutitermes lujae. Proc Natl Acad Sci 81:7665–7668

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McGlynn TP, Diamond SE, Dunn RR (2012) Tradeoffs in the evolution of caste and body size in the hyperdiverse ant genus Pheidole. PLoS One 7:e48202

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Michener CD (2007) The bees of the world (2nd edition). JHU Press

  • Moo-Valle H, Quezada-Euán JJ, Wenseleers T (2001) The effect of food reserves on the production of sexual offspring in the stingless bee Melipona beecheii (Apidae, Meliponini). Insects Soc 48:398–403

    Article  Google Scholar 

  • Noirot CH, Pasteels JM (1987) Ontogenetic development and evolution of the worker caste in termites. Experientia 43:851–860

    Article  Google Scholar 

  • Oster GF, Wilson EO (1978) Caste and ecology in the social insects. Princeton University Press

  • Ottoni EB (2000) EthoLog 2.2: a tool for the transcription and timing of behavior observation sessions. Behav Res Methods Instrum Comput 32:446–449

    Article  CAS  PubMed  Google Scholar 

  • Passera L, Roncin E, Kaufmann B, Keller L (1996) Increased soldier production in ant colonies exposed to intraspecific competition. Nat 379:630–631

    Article  CAS  Google Scholar 

  • Prato M, Soares AEE (2013) Production of sexuals and mating frequency in the stingless bee Tetragonisca angustula (Latreille) (Hymenoptera, Apidae). Neotrop Entomol 42:474–482

    Article  Google Scholar 

  • Quezada-Euán JJG, López-Velasco A, Pérez-Balam J, Moo-Valle H, Velazquez-Madrazo A, Paxton RJ (2011) Body size differs in workers produced across time and is associated with variation in the quantity and composition of larval food in Nannotrigona perilampoides (Hymenoptera, Meliponini). Insects Soc 58:31–38

    Article  Google Scholar 

  • R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Radmacher S, Strohm E (2010) Factors affecting offspring body size in the solitary bee Osmia bicornis (Hymenoptera, Megachilidae). Apidologie 41:169–177

    Article  Google Scholar 

  • Rajakumar R et al (2012) Ancestral developmental potential facilitates parallel evolution in ants. Sci 335:79–82

    Article  CAS  Google Scholar 

  • Ramalho M, Imperatriz-Fonseca VL, Giannini TC (1998) Within-colony size variation of foragers and pollen load capacity in the stingless bee Melipona quadrifasciata anthidioides Lepeletier (Apidae, Hymenoptera). Apidologie 29:221–228

    Article  Google Scholar 

  • Roulston TAH, Cane JH (2000) The effect of diet breadth and nesting ecology on body size variation in bees (Apiformes). J Kansas Entomol Soc 129–142

  • Shibao H, Kutsukake M, Fukatsu T (2004) Density-dependent induction and suppression of soldier differentiation in an aphid social system. J Insect Physiol 50:995–1000

    Article  CAS  PubMed  Google Scholar 

  • Shingleton AW, Frankino WA, Flatt T, Nijhout HF, Emlen D (2007) Size and shape: the developmental regulation of static allometry in insects. BioEssays 29:536–548

    Article  PubMed  Google Scholar 

  • Shpigler H, Tamarkin M, Gruber Y, Poleg M, Siegel AJ, Bloch G (2013) Social influences on body size and developmental time in the bumblebee Bombus terrestris. Behav Ecol Sociobiol 67:1601–1612

    Article  Google Scholar 

  • Smith CR, Toth AL, Suarez AV, Robinson GE (2008) Genetic and genomic analyses of the division of labour in insect societies. Nat Rev Genet 9:735–748

    Article  CAS  PubMed  Google Scholar 

  • Spaethe J, Brockmann A, Halbig C, Tautz J (2007) Size determines antennal sensitivity and behavioural threshold to odors in bumblebee workers. Naturwissenschaften 94:733–739

    Article  CAS  PubMed  Google Scholar 

  • Spradbery JP (1973) Wasps. University of Washington Press, Seattle

    Google Scholar 

  • Stern DL, Foster WA (1996) The evolution of soldiers in aphids. Biol Rev 71:27–79

    Article  CAS  PubMed  Google Scholar 

  • Strassmann J (2001) The rarity of multiple mating by females in the social Hymenoptera. Insects Soc 48:1–13

    Article  Google Scholar 

  • Tian L, Zhou X (2014) The soldiers in societies: defense, regulation and evolution. Int J Biol Sci 10:296–308

    Article  PubMed Central  PubMed  Google Scholar 

  • Tóth E, Queller DC, Dollin A, Strassmann JE (2004) Conflict over male parentage in stingless bees. Insectes Soc 51:1–11

    Article  Google Scholar 

  • Tschinkel WR (1998) Sociometry and sociogenesis of colonies of the harvester ant, Pogonomyrmex badius: worker characteristics in relation to colony size and season. Insects Soc 45:385–410

    Article  Google Scholar 

  • van Zweden JS, Grüter C, Jones SM, Ratnieks FL (2011) Hovering guards of the stingless bee Tetragonisca angustula increase colony defensive perimeter as shown by intra-and inter-specific comparisons. Behav Ecol Sociobiol 65:1277–1282

    Article  Google Scholar 

  • Waddington KD, Herbst LH, Roubik DW (1986) Relationship between recruitment systems of stingless bees and within-nest worker size variation. J Kansas Entomol Soc 95–102

  • Wheeler DE (1986) Developmental and physiological determinants of caste in social Hymenoptera: evolutionary implications. Am Nat 13–34

  • Wheeler DE (1991) The developmental basis of worker caste polymorphism in ants. Am Nat 12181238

  • Wheeler DE, Nijhout HF (1981) Soldier determination in ants: new role for juvenile hormone. Sci 213:361–363

    Article  CAS  Google Scholar 

  • Wheeler DE, Nijhout HF (1984) Soldier determination in Pheidole bicarinata: inhibition by adult soldiers. J Insect Physiol 30:127–135

    Article  Google Scholar 

  • Wille A (1983) Biology of the stingless bees. Ann Rev Entomol 28:41–64

    Article  Google Scholar 

  • Winston ML (1991) The biology of the honey bee. Harvard University Press

  • Wittmann D (1985) Aerial defense of the nest by workers of the stingless bee Trigona (Tetragonisca) angustula (Latreille) (Hymenoptera: Apidae). Behav Ecol Sociobiol 16:111–114

    Article  Google Scholar 

  • Yang AS, Martin CH, Nijhout HF (2004) Geographic variation of caste structure among ant populations. Curr Biol 14:514–519

    Article  CAS  PubMed  Google Scholar 

  • Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer

Download references

Acknowledgments

We thank Francis Ratnieks and Fabio Nascimento for logistic support. Many thanks to Benedikt Hammel for recording videos. C.G. was funded by a Science Without Borders fellowship from the Brazilian National Council for Scientific and Technological Development (CNPq) (Process-number: 400664/2012-7) and an Ambizione Fellowship from the Swiss National Science Foundation (PZOOP3_142628/1). AVN was funded by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (2012/11144-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisca H. I. D. Segers.

Additional information

Communicated by C. Grozinger

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Segers, F.H.I.D., Menezes, C., Vollet-Neto, A. et al. Soldier production in a stingless bee depends on rearing location and nurse behaviour. Behav Ecol Sociobiol 69, 613–623 (2015). https://doi.org/10.1007/s00265-015-1872-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-015-1872-6

Keywords

Navigation