Skip to main content

Advertisement

Log in

Effect of gyrodactylid ectoparasites on host behaviour and social network structure in guppies Poecilia reticulata

  • Original Paper
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Understanding how individuals modify their social interactions in response to infectious disease is of central importance for our comprehension of how disease dynamics operate in real-world populations. Whilst a significant amount of theoretical work has modelled disease transmission using network models, we have comparatively little understanding of how infectious disease impacts on the social behaviour of individuals and how these effects scale up to the level of the population. We experimentally manipulated the parasite load of female guppies (Poecilia reticulata) and introduced fish either infected with the ectoparasites Gyrodactylus spp. (experimental) or uninfected (control) into replicated semi-natural populations of eight size-matched female guppies. We quantified the behaviour and social associations of both the introduced fish and the population fish. We found that infected experimental fish spent less time associating with the population fish than the uninfected control fish. Using information on which fish initiated shoal fission (splitting) events, our results demonstrate that the population fish actively avoided infected experimental fish. We also found that the presence of an infected individual resulted in a continued decline in social network clustering up to at least 24 h after the introduction of the infected fish, whereas in the control treatment, the clustering coefficient showed an increase at this time point. These results demonstrate that the presence of a disease has implications for both the social associations of infected individuals and for the social network structure of the population, which we predict will have consequences for infectious disease transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig.2
Fig. 3

Similar content being viewed by others

References

  • Anderson RM, May RM (1979) Population biology of infectious diseases: part I. Nature 280(5721):361–367

    Article  PubMed  CAS  Google Scholar 

  • Arnold W, Anja VL (1993) Ectoparasite loads decrease the fitness of alpine marmots (Marmota marmota) but are not a cost of sociality. Behav Ecol 4(1):36–39. doi:10.1093/beheco/4.1.36

    Article  Google Scholar 

  • Barber I, Downey LC, Braithwaite VA (1998) Parasitism, oddity and the mechanism of shoal choice. J Fish Biol 53(6):1365–1368

    Article  Google Scholar 

  • Barber I, Hoare D, Krause J (2000) Effects of parasites on fish behaviour: a review and evolutionary perspective. Rev Fish Biol Fish 10(2):131–165

    Article  Google Scholar 

  • Bell DC, Atkinson JS, Carlson JW (1999) Centrality measures for disease transmission networks. Soc Networks 21(1):1–21. doi:10.1016/s0378-8733(98)00010-0

    Article  Google Scholar 

  • Borgatti SP, Everett MG, Freeman LC (2002) Ucinet for windows: software for social network analysis. Analytic Technologies, Harvard

    Google Scholar 

  • Brown CR, Brown MB (2004) Group size and ectoparasitism affect daily survival probability in a colonial bird. Behav Ecol Sociobiol 56(5):498–511. doi:10.1007/s00265-004-0813-6

    Article  Google Scholar 

  • Buckling A, Rainey PB (2002) The role of parasites in sympatric and allopatric host diversification. Nature 420(6915):496–499

    Article  PubMed  CAS  Google Scholar 

  • Cable J (2011) Poeciliid parasites. In: Evans JP, Pilastro A, Schlupp I (eds) Ecology & evolution of poeciliid fishes. University of Chicago Press, Chicago

    Google Scholar 

  • Cable J, Harris PD (2002) Gyrodactylid developmental biology: historical review, current status and future trends. Int J Parasitol 32(3):255–280

    Article  PubMed  CAS  Google Scholar 

  • Cable J, Scott ECG, Tinsley RC, Harris PD (2002) Behavior favoring transmission in the viviparous monogenean Gyrodactylus turnbulli. J Parasitol 88(1):183–184. doi:10.1645/0022-3395(2002)088[0183:bftitv]2.0.co;2

    PubMed  CAS  Google Scholar 

  • Choisy M, Guégan JF, Rohani P (2007) Mathematical modeling of infectious diseases dynamics. In: Tibayrenc M (ed) Encyclopedia of infectious diseases: modern methodologies. Wiley, Hoboken, pp 379–404

    Chapter  Google Scholar 

  • Christley RM, Pinchbeck GL, Bowers RG, Clancy D, French NP, Bennett R, Turner J (2005) Infection in social networks: using network analysis to identify high-risk individuals. Am J Epidemiol 162(10):1024–1031

    Article  PubMed  CAS  Google Scholar 

  • Corner LAL, Pfeiffer DU, Morris RS (2003) Social-network analysis of Mycobacterium bovis transmission among captive brushtail possums (Trichosurus vulpecula). Prev Vet Med 59(3):147–167

    Article  PubMed  CAS  Google Scholar 

  • Côté IM, Poulinb R (1995) Parasitism and group size in social animals: a meta-analysis. Behav Ecol 6(2):159–165. doi:10.1093/beheco/6.2.159

    Article  Google Scholar 

  • Craft ME, Volz E, Packer C, Meyers LA (2009) Distinguishing epidemic waves from disease spillover in a wildlife population. Proc R Soc Lond B Bio 276(1663):1777–1785. doi:10.1098/rspb.2008.1636

    Article  Google Scholar 

  • Croft DP, Albanese B, Arrowsmith BJ, Botham M, Webster M, Krause J (2003a) Sex biased movement in the guppy (Poecilia reticulata). Oecologia 137:62–68

    Article  PubMed  Google Scholar 

  • Croft DP, Arrowsmith BJ, Bielby J, Skinner K, White E, Couzin ID, Magurran AE, Ramnarine I, Krause J (2003b) Mechanisms underlying shoal composition in the Trinidadian guppy (Poecilia reticulata). Oikos 100:429–438

    Article  Google Scholar 

  • Croft DP, Krause J, James R (2004) Social networks in the guppy (Poecilia reticulata). Proc R Soc Lond B Biol Sci 271:S516–S519

    Article  Google Scholar 

  • Croft DP, James R, Thomas POR, Hathaway C, Mawdsley D, Laland KN, Krause J (2006) Social structure and co-operative interactions in a wild population of guppies (Poecilia reticulata). Behav Ecol Sociobiol 59(5):644–650

    Article  Google Scholar 

  • Croft DP, James R, Krause J (2008) Exploring animal social networks. Princeton University Press, Princeton

    Google Scholar 

  • Cross PC, Lloyd-Smith JO, Bowers JA, Hay CT, Hofmeyr M, Getz WM (2004) Integrating association data and disease dynamics in a social ungulate: bovine tuberculosis in African buffalo in the Kruger National Park. Ann Zool Fenn 41(6):879–892

    Google Scholar 

  • Darden SK, James R, Ramnarine IW, Croft DP (2009) Social implications of the battle of the sexes: sexual harassment disrupts female sociality and social recognition. Proc R Soc Lond B Biol Sci 276(1667):2651–2656. doi:10.1098/rspb.2009.0087

    Article  Google Scholar 

  • Dobson AP (1988) The population biology of parasite-induced changes in host behavior. Q Rev Biol 63:139–165

    Article  PubMed  CAS  Google Scholar 

  • Drewe JA (2010) Who infects whom? Social networks and tuberculosis transmission in wild meerkats. Proc R Soc Lond B Biol Sci 277(1681):633–642. doi:10.1098/rspb.2009.1775

    Article  Google Scholar 

  • Eames KTD, Keeling MJ (2002) Modeling dynamic and network heterogeneities in the spread of sexually transmitted diseases. Proc Natl Acad Sci USA 99(20):13330–13335

    Article  PubMed  CAS  Google Scholar 

  • Funk S, Salathé M, Jansen VAA (2010) Modelling the influence of human behaviour on the spread of infectious diseases: a review. J R Soc Interface. doi:10.1098/rsif.2010.0142

  • Godfrey SS, Bull CM, James R, Murray K (2009) Network structure and parasite transmission in a group living lizard, the gidgee skink, Egernia stokesii. Behav Ecol Sociobiol 63(7):1045–1056. doi:10.1007/s00265-009-0730-9

    Article  Google Scholar 

  • Godfrey SS, Moore JA, Nelson NJ, Bull CM (2010) Social network structure and parasite infection patterns in a territorial reptile, the tuatara (Sphenodon punctatus). Int J Parasitol 40(13):1575–1585

    Article  PubMed  Google Scholar 

  • Gudelj I, White KAJ (2004) Spatial heterogeneity, social structure and disease dynamics of animal populations. Theor Popul Biol 66(2):139–149. doi:10.1016/j.tpb.2004.04.003

    Article  PubMed  CAS  Google Scholar 

  • Gupta S, Anderson RM, May RM (1989) Networks of sexual contacts—implications for the pattern of spread of HIV. Aids 3(12):807–817

    Article  PubMed  CAS  Google Scholar 

  • Keeling M (2005) The implications of network structure for epidemic dynamics. Theor Popul Biol 67(1):1–8

    Article  PubMed  Google Scholar 

  • Kolluru GR, Grether GF, Dunlop E, South SH (2009) Food availability and parasite infection influence mating tactics in guppies (Poecilia reticulata). Behav Ecol 20(1):131–137. doi:10.1093/beheco/arn124

    Article  Google Scholar 

  • Krause J, Godin JGJ (1996) Influence of parasitism on shoal choice in the banded killifish (Fundulus diaphanus, Teleostei, Cyprinodontidae). Ethology 102(1):40–49

    Article  Google Scholar 

  • Krause J, Ruxton GD (2002) Living in groups. Oxford University Press, Oxford

    Google Scholar 

  • LeMenach A, Legrand J, Grais RF, Viboud C, Valleron A-J, Flahault A (2005) Modeling spatial and temporal transmission of foot-and-mouth disease in France: identification of high-risk areas. Vet Res 36(5–6):699–712

    Article  Google Scholar 

  • Loehle C (1995) Social barriers to pathogen transmission in wild animal populations. Ecology 76(2):326–335

    Article  Google Scholar 

  • Magurran AE (2005) Evolutionary ecology: the Trinidadian guppy. Oxford Series in Ecology and Evolution. Oxford University Press, Oxford

    Google Scholar 

  • May RM (1988) Conservation and disease. Conserv Biol 2(1):28–30. doi:10.1111/j.1523-1739.1988.tb00332.x

    Article  Google Scholar 

  • May RM, Anderson RM (1979) Population biology of infectious diseases: part II. Nature 280(5722):455–461

    Article  PubMed  CAS  Google Scholar 

  • Meyers LA, Pourbohloul B, Newman MEJ, Skowronski DM, Brunham RC (2005) Network theory and SARS: predicting outbreak diversity. J Theor Biol 232(1):71–81

    Article  PubMed  Google Scholar 

  • Moore J (2002) Parasites and the behavior of animals. Oxford Series in Ecology and Evolution. Oxford University Press, Oxford

    Google Scholar 

  • Nakagawa S, Cuthill IC (2007) Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol Rev 82(4):591–605. doi:10.1111/j.1469-185X.2007.00027.x

    Article  PubMed  Google Scholar 

  • Newman MEJ (2001) Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Phys Rev E 6401(1):7. doi:016132

    Google Scholar 

  • Newman MEJ (2003) Properties of highly clustered networks. Phys Rev E 68(2):art. no.-026121

  • Pitcher TJ, Magurran AE, Allan JR (1983) Shifts of behaviour with shoal size in Cyprinids. In: Proceedings of the 3rd British Freshwater Fish Conference, 1983, pp 220–228

  • Porphyre T, Stevenson M, Jackson R, McKenzie J (2008) Influence of contact heterogeneity on TB reproduction ratio R0 in a free-living brushtail possum Trichosurus vulpecula population. Vet Res 39(3):31

    Article  PubMed  Google Scholar 

  • Potterat JJ, Rothenberg RB, Muth SQ (1999) Network structural dynamics and infectious disease propagation. Int J STD AIDS 10(3):182–185. doi:10.1258/0956462991913853

    Article  PubMed  CAS  Google Scholar 

  • Pourbohloul B, Meyers LA, Skowronski DM, Krajden M, Patrick DM, Brunham RC (2005) Modeling control strategies of respiratory pathogens. Emerg Infect Dis 11(8):1249–1256

    PubMed  Google Scholar 

  • Richards EL, van Oosterhout C, Cable J (2010) Sex-specific differences in shoaling affect parasite transmission in guppies. PLoS ONE 5(10):e13285

    Article  PubMed  Google Scholar 

  • Rothenberg RB, Potterat JJ, Woodhouse DE, Muth SQ, Darrow WW, Klovdahl AS (1998) Social network dynamics and HIV transmission. Aids 12(12):1529–1536

    Article  PubMed  CAS  Google Scholar 

  • Scott ME, Anderson RM (1984) The population-dynamics of Gyrodactylus bullatarudis (Monogenea) within laboratory populations of the fish host Poecilia reticulata. Parasitology 89:159–194

    Article  PubMed  Google Scholar 

  • Steidl RJ, Hayes JP, Schauber E (1997) Statistical power analysis in wildlife research. J Wildlife Manage 61(2):270–279

    Article  Google Scholar 

  • Stoehr AM (1999) Are significance thresholds appropriate for the study of animal behaviour? Anim Behav 57(5):F22–F25

    Article  PubMed  Google Scholar 

  • Thomas L (1997) Retrospective power analysis. Conserv Biol 11(1):276–280. doi:10.1046/j.1523-1739.1997.96102.x

    Article  Google Scholar 

  • Tildesley MJ, House TA, Bruhn MC, Curry RJ, O’Neil M, Allpress JLE, Smith G, Keeling MJ (2010) Impact of spatial clustering on disease transmission and optimal control. Proc Natl Acad Sci USA 107(3):1041–1046. doi:10.1073/pnas.0909047107

    Article  PubMed  CAS  Google Scholar 

  • Tobler M, Schlupp I (2008) Influence of black spot disease on shoaling behaviour in female western mosquitofish, Gambusia affinis (Poeciliidae, Teleostei). Environ Biol Fishes 81(1):29–34. doi:10.1007/s10641-006-9153-x

    Article  Google Scholar 

  • van Oosterhout C, Joyce DA, Cummings SM, Blais J, Barson NJ, Ramnarine IW, Mohammed RS, Persad N, Cable J (2006) Balancing selection, random genetic drift, and genetic variation at the major histocompatibility complex in two wild populations of guppies (Poecilia reticulata). Evolution 60(12):2562–2574

    Article  PubMed  Google Scholar 

  • van Oosterhout C, Mohammed RS, Hansen H, Archard GA, McMullan M, Weese DJ, Cable J (2007) Selection by parasites in spate conditions in wild Trinidadian guppies (Poecilia reticulata). Int J Parasitol 37(7):805–812. doi:10.1016/j.ijpara.2006.12.016

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Jens Krause and Dick James for stimulating discussions and two anonymous reviewers for their constructive comments on the manuscript. JC was funded by an Advanced Natural Environment Research Council Research Fellowship (NER/J/S/2002/00706).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darren P. Croft.

Additional information

Communicated by J. Krause

Rights and permissions

Reprints and permissions

About this article

Cite this article

Croft, D.P., Edenbrow, M., Darden, S.K. et al. Effect of gyrodactylid ectoparasites on host behaviour and social network structure in guppies Poecilia reticulata . Behav Ecol Sociobiol 65, 2219–2227 (2011). https://doi.org/10.1007/s00265-011-1230-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-011-1230-2

Keywords

Navigation