, Volume 63, Issue 1, pp 63-75
Date: 13 Aug 2008

Flight distance of urban birds, predation, and selection for urban life

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Numerous species have adapted to humans, especially invasive species associated with humans in towns and cities. Short flight distances of populations adapted to urban environments reflect changes in behavior and physiology, reflecting phenotypic plasticity or evolution. Here, I tested the hypothesis that the decrease in flight distance to a potential predator (an approaching human) reflected adaptation to urbanization, using a data set of flight distances of 44 common species of European birds in different stages of adaptation to urban environments. Urban populations had consistently shorter flight distances than rural populations of the same species. Variation in relative flight distance of urban populations was predicted by the number of generations since urbanization, as expected by a gradual process of adaptation. Furthermore, species with relatively large populations in urban environments would be an indication of local adaptation to urban environments. Relative flight distance of urban population was shorter for species with large populations in urban compared to rural habitats. Species that had adapted to urban environments as shown by short flight distances were less susceptible to predation by the European sparrowhawk Accipiter nisus than species with relatively long flight distances in urban populations. These findings provide evidence consistent with the hypothesis that recent changes in the tameness of urban birds, as reflected by their relatively short flight distances, is an adaptation to the novel urban environment.

Communicated by E. Korpimäki