, Volume 62, Issue 12, pp 1935-1945
Date: 01 Aug 2008

Sympatric species of threespine stickleback differ in their performance in a spatial learning task

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Increasing evidence suggests that cognitive function is under selection in diverse taxa and that this results in different cognitive abilities in taxa experiencing different selective environments. For example, species inhabiting spatially complex environments might be expected to have good spatial learning ability. We investigated whether local habitat conditions influence learning by comparing the performance of two recently diverged species of threespine stickleback (Gasterosteus aculeatus complex) in a spatial learning task. The two species reside sympatrically in several lakes. Benthics occupy the spatially structured vegetated littoral zone, whereas limnetics occupy the spatially homogenous open-water pelagic zone. We trained fish to locate a hidden reward in a T-maze and asked whether they did so by learning a body-centred pattern of movement (turn left or right) or by using plant landmarks. Both benthics and limnetics used turn and landmark cues, but benthics learnt the task almost twice as quickly as limnetics. This difference is consistent with the hypothesis that benthic and limnetic sticklebacks are equipped with spatial learning abilities well suited to the spatial complexity of their littoral and pelagic habitats. Our findings add to the understanding of the evolution of learning.

Communicated by T. Bakker