Skip to main content
Log in

The safety of allogeneic innate lymphocyte therapy for glioma patients with prior cranial irradiation

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The standard treatment of high-grade glioma presents a combination of radiotherapy, chemotherapy and surgery. Immunotherapy is proposed as a potential adjunct to standard cytotoxic regimens to target remaining microscopic disease following resection. We have shown ex vivo expanded/activated γδ T cells to be a promising innate lymphocyte therapy based on their recognition of stress antigens expressed on gliomas. However, successful integration of γδ T cell therapy protocols requires understanding the efficacy and safety of adoptively transferred immune cells in the post-treatment environment. The unique features of γδ T cell product and the environment (hypoxia, inflammation) can affect levels of expression of key cell receptors and secreted factors and either promote or hinder the feasibility of γδ T cell therapy. We investigated the potential for the γδ T cells to injure normal brain tissue that may have been stressed by treatment. We evaluated γδ T cell toxicity by assessing actual and correlative toxicity indicators in several available models including: (1) expression of stress markers on normal primary human astrocytes (as surrogate for brain parenchyma) after irradiation and temozolomide treatment, (2) cytotoxicity of γδ T cells on normal and irradiated primary astrocytes, (3) microglial activation and expression of stress-induced ligands in mouse brain after whole-brain irradiation and (4) expression of stress-induced markers on human brain tumors and on normal brain tissue. The lack of expression of stress-induced ligands in all tested models suggests that γδ T cell therapy is safe for brain tumor patients who undergo standard cytotoxic therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BrdU:

Bromodeoxyuridine

CAR:

Chimeric antigen receptor

CTL:

Cytotoxic T lymphocytes

DAPI:

4′,6-diamidino-2-phenylindole, nuclear counterstaining dye

DDR:

DNA damage response

E:T:

Effector-to-target ratio

FFPE:

Formalin-fixed paraffin-embedded specimens

GBM:

Glioblastoma multiforme

γδ T:

Gamma delta T cells

IHC:

Immunohistochemistry

IL:

Interleukin

LAK:

Lymphokine-activated killer cells

NK:

Natural killer cells

TCR:

T cell receptor

TMZ:

Temozolomide

TNFα:

Tumor necrosis factor α

UAB:

University of Alabama at Birmingham

ZOL:

Zoledronic acid

References

  1. Ishikawa E, Takano S, Ohno T, Tsuboi K (2012) Adoptive cell transfer therapy for malignant gliomas. Adv Exp Med Biol 746:109–120

    Article  CAS  PubMed  Google Scholar 

  2. Bielamowicz K, Khawja S, Ahmed N (2013) Adoptive cell therapies for glioblastoma. Front Oncol 3:275

    Article  PubMed Central  PubMed  Google Scholar 

  3. Lamb LS (2009) Gammadelta T cells as immune effectors against high-grade gliomas. Immunol Res 45:85–95

    Article  PubMed  Google Scholar 

  4. Vantourout P, Hayday A (2013) Six-of-the-best: unique contributions of γδ T cells to immunology. Nat Rev Immunol 13:88–100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Beetz S, Marischen L, Kabelitz D, Wesch D (2007) Human gamma delta T cells: candidates for the development of immunotherapeutic strategies. Immunol Res 37:97–111

    Article  CAS  PubMed  Google Scholar 

  6. Kabelitz D, Wesch D, He W (2007) Perspectives of gammadelta T cells in tumor immunology. Cancer Res 67:5–8

    Article  CAS  PubMed  Google Scholar 

  7. Preusser M, de Ribaupierre S, Wöhrer A, Erridge SC, Hegi M et al (2011) Current concepts and management of glioblastoma. Ann Neurol 70:9–21

    Article  PubMed  Google Scholar 

  8. Mukherjee D, Coates PJ, Lorimore SA, Wright EG (2014) Responses to ionizing radiation mediated by inflammatory mechanisms. J Pathol 232:289–299

    Article  CAS  PubMed  Google Scholar 

  9. Zhao W, Robbins ME (2009) Inflammation and chronic oxidative stress in radiation-induced late normal tissue injury: therapeutic implications. Curr Med Chem 16:130–143

    Article  CAS  PubMed  Google Scholar 

  10. Friedman EJ (2002) Immune modulation by ionizing radiation and its implications for cancer immunotherapy. Curr Pharm Des 8:1765–1780

    Article  CAS  PubMed  Google Scholar 

  11. Rödel F, Frey B, Gaipl U, Keilholz L, Fournier C et al (2012) Modulation of inflammatory immune reactions by low-dose ionizing radiation: molecular mechanisms and clinical application. Curr Med Chem 19:1741–1750

    Article  PubMed  Google Scholar 

  12. Rödel F, Frey B, Multhoff G, Gaipl U (2015) Contribution of the immune system to bystander and non-targeted effects of ionizing radiation. Cancer Lett 356:105–113

    Article  PubMed  Google Scholar 

  13. Bryant NL, Gillespie GY, Lopez RD, Markert JM, Cloud GA et al (2011) Preclinical evaluation of ex vivo expanded/activated γδ T cells for immunotherapy of glioblastoma multiforme. J Neurooncol 101:179–188

    Article  PubMed  Google Scholar 

  14. Wu KL, Tu B, Li YQ, Wong CS (2010) Role of intercellular adhesion molecule-1 in radiation-induced brain injury. Int J Radiat Oncol Biol Phys 76:220–228

    Article  CAS  PubMed  Google Scholar 

  15. Spear P, Wu MR, Sentman ML, Sentman CL (2013) NKG2D ligands as therapeutic targets. Cancer Immun 13:8

    PubMed Central  PubMed  Google Scholar 

  16. Raulet DH, Gasser S, Gowen BG, Deng W, Jung H (2013) Regulation of ligands for the NKG2D activating receptor. Annu Rev Immunol 31:413–441

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Kim SJ, Kim JS, Park ES, Lee JS, Lin Q et al (2011) Astrocytes upregulate survival genes in tumor cells and induce protection from chemotherapy. Neoplasia 13:286–298

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Wang L, Cossette SM, Rarick KR, Gershan J, Dwinell MB et al (2013) Astrocytes directly influence tumor cell invasion and metastasis in vivo. PLoS One 8:e80933

    Article  PubMed Central  PubMed  Google Scholar 

  19. Moore ED, Kooshki M, Metheny-Barlow LJ, Gallagher PE, Robbins ME (2013) Angiotensin-(1–7) prevents radiation-induced inflammation in rat primary astrocytes through regulation of MAP kinase signaling. Free Radic Biol Med 65:1060–1068

    Article  CAS  PubMed  Google Scholar 

  20. Lamb LS, Bowersock J, Dasgupta A, Gillespie GY, Su Y et al (2013) Engineered drug resistant γδ T cells kill glioblastoma cell lines during a chemotherapy challenge: a strategy for combining chemo- and immunotherapy. PLoS One 8:e51805

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Couzin-Frankel J (2013) Breakthrough of the year 2013. Cancer immunotherapy. Science 342:1432–1433

    Article  CAS  PubMed  Google Scholar 

  22. Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM et al (2010) Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 18:843–851

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Nicol AJ, Tokuyama H, Mattarollo SR, Hagi T, Suzuki K et al (2011) Clinical evaluation of autologous gamma delta T cell-based immunotherapy for metastatic solid tumours. Br J Cancer 105:778–786

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Gomes AQ, Martins DS, Silva-Santos B (2010) Targeting γδ T lymphocytes for cancer immunotherapy: from novel mechanistic insight to clinical application. Cancer Res 70:10024–10027

    Article  CAS  PubMed  Google Scholar 

  25. Bryant NL, Suarez-Cuervo C, Gillespie GY, Markert JM, Nabors LB et al (2009) Characterization and immunotherapeutic potential of gammadelta T-cells in patients with glioblastoma. Neuro Oncol 11:357–367

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Coudert JD, Held W (2006) The role of the NKG2D receptor for tumor immunity. Semin Cancer Biol 16:333–343

    Article  CAS  PubMed  Google Scholar 

  27. Schmudde M, Braun A, Pende D, Sonnemann J, Klier U et al (2008) Histone deacetylase inhibitors sensitize tumour cells for cytotoxic effects of natural killer cells. Cancer Lett 272:110–121

    Article  CAS  PubMed  Google Scholar 

  28. Rohner A, Langenkamp U, Siegler U, Kalberer CP, Wodnar-Filipowicz A (2007) Differentiation-promoting drugs up-regulate NKG2D ligand expression and enhance the susceptibility of acute myeloid leukemia cells to natural killer cell-mediated lysis. Leuk Res 31:1393–1402

    Article  CAS  PubMed  Google Scholar 

  29. Poggi A, Catellani S, Garuti A, Pierri I, Gobbi M et al (2009) Effective in vivo induction of NKG2D ligands in acute myeloid leukaemias by all-trans-retinoic acid or sodium valproate. Leukemia 23:641–648

    Article  CAS  PubMed  Google Scholar 

  30. Rosental B, Appel MY, Yossef R, Hadad U, Brusilovsky M et al (2012) The effect of chemotherapy/radiotherapy on cancerous pattern recognition by NK cells. Curr Med Chem 19:1780–1791

    Article  CAS  PubMed  Google Scholar 

  31. Kim JY, Son YO, Park SW, Bae JH, Chung JS et al (2006) Increase of NKG2D ligands and sensitivity to NK cell-mediated cytotoxicity of tumor cells by heat shock and ionizing radiation. Exp Mol Med 38:474–484

    Article  CAS  PubMed  Google Scholar 

  32. Bedel R, Thiery-Vuillemin A, Grandclement C, Balland J, Remy-Martin JP et al (2011) Novel role for STAT3 in transcriptional regulation of NK immune cell targeting receptor MICA on cancer cells. Cancer Res 71:1615–1626

    Article  CAS  PubMed  Google Scholar 

  33. Xu X, Rao GS, Groh V, Spies T, Gattuso P et al (2011) Major histocompatibility complex class I-related chain A/B (MICA/B) expression in tumor tissue and serum of pancreatic cancer: role of uric acid accumulation in gemcitabine-induced MICA/B expression. BMC Cancer 11:194

    Article  PubMed Central  PubMed  Google Scholar 

  34. Butler JE, Moore MB, Presnell SR, Chan HW, Chalupny NJ et al (2009) Proteasome regulation of ULBP1 transcription. J Immunol 182:6600–6609

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Riederer I, Sievert W, Eissner G, Molls M, Multhoff G (2010) Irradiation-induced up-regulation of HLA-E on macrovascular endothelial cells confers protection against killing by activated natural killer cells. PLoS One 5:e15339

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Gasser S, Orsulic S, Brown EJ, Raulet DH (2005) The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 436:1186–1190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Hayday AC (2009) Gammadelta T cells and the lymphoid stress-surveillance response. Immunity 31:184–196

    Article  CAS  PubMed  Google Scholar 

  38. Schwacha MG (2009) Gammadelta T-cells: potential regulators of the post-burn inflammatory response. Burns 35:318–326

    Article  PubMed Central  PubMed  Google Scholar 

  39. Matsushima A, Ogura H, Fujita K, Koh T, Tanaka H et al (2004) Early activation of gammadelta T lymphocytes in patients with severe systemic inflammatory response syndrome. Shock 22:11–15

    Article  CAS  PubMed  Google Scholar 

  40. Williams J, Chen Y, Rubin P, Finkelstein J, Okunieff P (2003) The biological basis of a comprehensive grading system for the adverse effects of cancer treatment. Semin Radiat Oncol 13:182–188

    Article  PubMed  Google Scholar 

  41. Lee WH, Sonntag WE, Mitschelen M, Yan H, Lee YW (2010) Irradiation induces regionally specific alterations in pro-inflammatory environments in rat brain. Int J Radiat Biol 86:132–144

    Article  PubMed Central  PubMed  Google Scholar 

  42. Rola R, Sarkissian V, Obenaus A, Nelson GA, Otsuka S et al (2005) High-LET radiation induces inflammation and persistent changes in markers of hippocampal neurogenesis. Radiat Res 164:556–560

    Article  CAS  PubMed  Google Scholar 

  43. Schindler MK, Forbes ME, Robbins ME, Riddle DR (2008) Aging-dependent changes in the radiation response of the adult rat brain. Int J Radiat Oncol Biol Phys 70:826–834

    Article  PubMed Central  PubMed  Google Scholar 

  44. Greene-Schloesser D, Moore E, Robbins ME (2013) Molecular pathways: radiation-induced cognitive impairment. Clin Cancer Res 19:2294–2300

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Moravan MJ, Olschowka JA, Williams JP, O’Banion MK (2011) Cranial irradiation leads to acute and persistent neuroinflammation with delayed increases in T-cell infiltration and CD11c expression in C57BL/6 mouse brain. Radiat Res 176:459–473

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Mitchell S. Berger, Department of Neurological Surgery, University of California, San Francisco for making available FFPE samples of human brain tumors. Support from Elsa U Pardee Foundation (Lawrence S. Lamb) is acknowledged and appreciated.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larisa Pereboeva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereboeva, L., Harkins, L., Wong, S. et al. The safety of allogeneic innate lymphocyte therapy for glioma patients with prior cranial irradiation. Cancer Immunol Immunother 64, 551–562 (2015). https://doi.org/10.1007/s00262-015-1662-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-015-1662-z

Keywords

Navigation