Skip to main content

Advertisement

Log in

Radiation-induced autophagy potentiates immunotherapy of cancer via up-regulation of mannose 6-phosphate receptor on tumor cells in mice

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

There is a significant body of evidence demonstrating that radiation therapy (XRT) enhances the effect of immune therapy. However, the precise mechanisms by which XRT potentiates the immunotherapy of cancer remain elusive. Here, we report that XRT potentiates the effect of immune therapy via induction of autophagy and resultant trafficking of mannose-6-phopsphate receptor (MPR) to the cell surface. Irradiation of different tumor cells caused substantial up-regulation of MPR on the cell surface in vitro and in vivo. Down-regulation of MPR in tumor cells with shRNA completely abrogated the combined effect of XRT and immunotherapy (CTLA4 antibody) in B16F10-bearing mice without changes in the tumor-specific responses of T cells. Radiation-induced MPR up-regulation was the result of redistribution of the receptor to the cell surface. This effect was caused by autophagy with redirection of MPR to autophagosomes in a clathrin-dependent manner. In autophagosomes, MPR lost its natural ligands, which resulted in subsequent trafficking of empty receptor(s) back to the surface. Together, our data demonstrated a novel mechanism by which XRT can enhance the effect of immunotherapy and the molecular mechanism of this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

3MA:

3-Methyladenine

ATG5:

Autophagy protein 5

ATG16L1:

Autophagy-related protein 16-1

CTL:

Cytotoxic T lymphocyte

CTLA4:

Cytotoxic T lymphocyte antigen 4

DAMP:

Damage-associated molecular pattern

DC:

Dendritic cell

GrzB:

Granzyme B

Gy:

Gray

IGFII:

Insulin-like growth factor II

iNOS:

Inducible nitric oxide synthase

LAMP2:

Lysosome-associated membrane protein 2

LLC:

Lewis lung cancer

LC3:

Microtubule-associated protein 1A/1B-light chain 3

MPR:

Mannose-6-phopsphate receptor

PD-L1:

Programmed death-ligand 1

shRNA:

Short hairpin RNA

siRNA:

Small interfering RNA

TAX:

Taxol

TGN:

Trans-golgi network

TLR:

Toll-like receptor

XRT:

Radiation therapy

References

  1. Aass N, De Mulder PH, Mickisch GH, Mulders P, van Oosterom AT, van Poppel H, Fossa SD, de Prijck L, Sylvester RJ (2005) Randomized phase II/III trial of interferon alfa-2a with and without 13-cis-retinoic acid in patients with progressive metastatic renal cell Carcinoma: the European Organisation for Research and Treatment of Cancer Genito-Urinary Tract Cancer Group (EORTC 30951). J Clin Oncol 23(18):4172–4178. doi:10.1200/JCO.2005.07.114

    Article  PubMed  CAS  Google Scholar 

  2. Sparano JA, Fisher RI, Sunderland M, Margolin K, Ernest ML, Sznol M, Atkins MB, Dutcher JP, Micetich KC, Weiss GR et al (1993) Randomized phase III trial of treatment with high-dose interleukin-2 either alone or in combination with interferon alfa-2a in patients with advanced melanoma. J Clin Oncol 11(10):1969–1977

    PubMed  CAS  Google Scholar 

  3. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbe C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Borella L, Webster RG (1971) The immunosuppressive effects of long-term combination chemotherapy in children with acute leukemia in remission. Cancer Res 31(4):420–426

    PubMed  CAS  Google Scholar 

  5. Gough MJ, Crittenden MR (2009) Combination approaches to immunotherapy: the radiotherapy example. Immunotherapy 1(6):1025–1037. doi:10.2217/imt.09.64

    Article  PubMed  Google Scholar 

  6. Harris J, Sengar D, Stewart T, Hyslop D (1976) The effect of immunosuppressive chemotherapy on immune function in patients with malignant disease. Cancer 37(2 Suppl):1058–1069

    Article  PubMed  CAS  Google Scholar 

  7. Hill-Kayser CE, Plastaras JP, Tochner Z, Glatstein E (2011) TBI during BM and SCT: review of the past, discussion of the present and consideration of future directions. Bone Marrow Transpl 46(4):475–484. doi:10.1038/bmt.2010.280

    Article  CAS  Google Scholar 

  8. Hodge JW, Ardiani A, Farsaci B, Kwilas AR, Gameiro SR (2012) The tipping point for combination therapy: cancer vaccines with radiation, chemotherapy, or targeted small molecule inhibitors. Semin Oncol 39(3):323–339. doi:10.1053/j.seminoncol.2012.02.006

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Punt CJ, Suciu S, Gore MA, Koller J, Kruit WH, Thomas J, Patel P, Lienard D, Eggermont AM, Keilholz U (2006) Chemoimmunotherapy with dacarbazine, cisplatin, interferon-alpha2b and interleukin-2 versus two cycles of dacarbazine followed by chemoimmunotherapy in patients with metastatic melanoma: a randomised phase II study of the European Organization for Research and Treatment of Cancer Melanoma Group. Eur J Cancer 42(17):2991–2995. doi:10.1016/j.ejca.2006.08.012

    Article  PubMed  CAS  Google Scholar 

  10. Kachikwu EL, Iwamoto KS, Liao YP, DeMarco JJ, Agazaryan N, Economou JS, McBride WH, Schaue D (2011) Radiation enhances regulatory T cell representation. Int J Radiat Oncol Biol Phys 81(4):1128–1135. doi:10.1016/j.ijrobp.2010.09.034

    Article  PubMed  PubMed Central  Google Scholar 

  11. Qu Y, Jin S, Zhang A, Zhang B, Shi X, Wang J, Zhao Y (2010) Gamma-ray resistance of regulatory CD4 + CD25 + Foxp3 + T cells in mice. Radiat Res 173(2):148–157. doi:10.1667/RR0978.1

    Article  PubMed  CAS  Google Scholar 

  12. Demaria S, Kawashima N, Yang AM, Devitt ML, Babb JS, Allison JP, Formenti SC (2005) Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin Cancer Res 11(2 Pt 1):728–734

    PubMed  CAS  Google Scholar 

  13. Deng L, Liang H, Burnette B, Beckett M, Darga T, Weichselbaum RR, Fu YX (2014) Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest 124(2):687–695. doi:10.1172/JCI67313

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Dewan MZ, Galloway AE, Kawashima N, Dewyngaert JK, Babb JS, Formenti SC, Demaria S (2009) Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res 15(17):5379–5388. doi:10.1158/1078-0432.CCR-09-0265

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Finkelstein SE, Iclozan C, Bui MM, Cotter MJ, Ramakrishnan R, Ahmed J, Noyes DR, Cheong D, Gonzalez RJ, Heysek RV, Berman C, Lenox BC, Janssen W, Zager JS, Sondak VK, Letson GD, Antonia SJ, Gabrilovich DI (2012) Combination of external beam radiotherapy (EBRT) with intratumoral injection of dendritic cells as neo-adjuvant treatment of high-risk soft tissue sarcoma patients. Int J Radiat Oncol Biol Phys 82(2):924–932. doi:10.1016/j.ijrobp.2010.12.068

    Article  PubMed  Google Scholar 

  16. Nikitina EY, Gabrilovich DI (2001) Combination of gamma-irradiation and dendritic cell administration induces a potent antitumor response in tumor-bearing mice: approach to treatment of advanced stage cancer. Int J Cancer 94(6):825–833

    Article  PubMed  CAS  Google Scholar 

  17. Teitz-Tennenbaum S, Li Q, Davis MA, Wilder-Romans K, Hoff J, Li M, Chang AE (2009) Radiotherapy combined with intratumoral dendritic cell vaccination enhances the therapeutic efficacy of adoptive T-cell transfer. J Immunother 32(6):602–612. doi:10.1097/CJI.0b013e3181a95165

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Teitz-Tennenbaum S, Li Q, Rynkiewicz S, Ito F, Davis MA, McGinn CJ, Chang AE (2003) Radiotherapy potentiates the therapeutic efficacy of intratumoral dendritic cell administration. Cancer Res 63(23):8466–8475

    PubMed  CAS  Google Scholar 

  19. Verbrugge I, Hagekyriakou J, Sharp LL, Galli M, West A, McLaughlin NM, Duret H, Yagita H, Johnstone RW, Smyth MJ, Haynes NM (2012) Radiotherapy increases the permissiveness of established mammary tumors to rejection by immunomodulatory antibodies. Cancer Res 72(13):3163–3174. doi:10.1158/0008-5472.CAN-12-0210

    Article  PubMed  CAS  Google Scholar 

  20. Stone HB, Peters LJ, Milas L (1979) Effect of host immune capability on radiocurability and subsequent transplantability of a murine fibrosarcoma. J Nat Cancer Inst 63(5):1229–1235

    PubMed  CAS  Google Scholar 

  21. Albert ML, Sauter B, Bhardwaj N (1998) Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392(6671):86–89. doi:10.1038/32183

    Article  PubMed  CAS  Google Scholar 

  22. Schuler G, Steinman RM (1997) Dendritic cells as adjuvants for immune-mediated resistance to tumors. J Exp Med 186(8):1183–1187

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Klug F, Prakash H, Huber PE, Seibel T, Bender N, Halama N, Pfirschke C, Voss RH, Timke C, Umansky L, Klapproth K, Schakel K, Garbi N, Jager D, Weitz J, Schmitz-Winnenthal H, Hammerling GJ, Beckhove P (2013) Low-dose irradiation programs macrophage differentiation to an iNOS(+)/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell 24(5):589–602. doi:10.1016/j.ccr.2013.09.014

    Article  PubMed  CAS  Google Scholar 

  24. Green DR, Ferguson T, Zitvogel L, Kroemer G (2009) Immunogenic and tolerogenic cell death. Nat Rev Immunol 9(5):353–363

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Durante M, Reppingen N, Held KD (2013) Immunologically augmented cancer treatment using modern radiotherapy. Trends Mol Med 19(9):565–582. doi:10.1016/j.molmed.2013.05.007

    Article  PubMed  CAS  Google Scholar 

  26. Matzinger P (2002) The danger model: a renewed sense of self. Science 296(5566):301–305. doi:10.1126/science.1071059

    Article  PubMed  CAS  Google Scholar 

  27. Ramakrishnan R, Huang C, Cho HI, Lloyd M, Johnson J, Ren X, Altiok S, Sullivan D, Weber J, Celis E, Gabrilovich DI (2012) Autophagy induced by conventional chemotherapy mediates tumor cell sensitivity to immunotherapy. Cancer Res 72(21):5483–5493. doi:10.1158/0008-5472.CAN-12-2236

    Article  PubMed  CAS  Google Scholar 

  28. Ramakrishnan R, Assudani D, Nagaraj S, Hunter T, Cho HI, Antonia S, Altiok S, Celis E, Gabrilovich DI (2010) Chemotherapy enhances tumor cell susceptibility to CTL-mediated killing during cancer immunotherapy in mice. J Clin Invest 120(4):1111–1124

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Griffiths G, Hoflack B, Simons K, Mellman I, Kornfeld S (1988) The mannose 6-phosphate receptor and the biogenesis of lysosomes. Cell 52(3):329–341

    Article  PubMed  CAS  Google Scholar 

  30. Dressel R, Raja SM, Honing S, Seidler T, Froelich CJ, von Figura K, Gunther E (2004) Granzyme-mediated cytotoxicity does not involve the mannose 6-phosphate receptors on target cells. J Biol Chem 279(19):20200–20210

    Article  PubMed  CAS  Google Scholar 

  31. Trapani JA, Sutton VR, Thia KY, Li YQ, Froelich CJ, Jans DA, Sandrin MS, Browne KA (2003) A clathrin/dynamin- and mannose-6-phosphate receptor-independent pathway for granzyme B-induced cell death. J Cell Biol 160(2):223–233

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Motyka B, Korbutt G, Pinkoski MJ, Heibein JA, Caputo A, Hobman M, Barry M, Shostak I, Sawchuk T, Holmes CF, Gauldie J, Bleackley RC (2000) Mannose 6-phosphate/insulin-like growth factor II receptor is a death receptor for granzyme B during cytotoxic T cell-induced apoptosis. Cell 103(3):491–500

    Article  PubMed  CAS  Google Scholar 

  33. Apel A, Herr I, Schwarz H, Rodemann HP, Mayer A (2008) Blocked autophagy sensitizes resistant carcinoma cells to radiation therapy. Cancer Res 68(5):1485–1494. doi:10.1158/0008-5472.CAN-07-0562

    Article  PubMed  CAS  Google Scholar 

  34. Lomonaco SL, Finniss S, Xiang C, Decarvalho A, Umansky F, Kalkanis SN, Mikkelsen T, Brodie C (2009) The induction of autophagy by gamma-radiation contributes to the radioresistance of glioma stem cells. Int J Cancer 125(3):717–722. doi:10.1002/ijc.24402

    Article  PubMed  CAS  Google Scholar 

  35. Overwijk WW, Tsung A, Irvine KR, Parkhurst MR, Goletz TJ, Tsung K, Carroll MW, Liu C, Moss B, Rosenberg SA, Restifo NP (1998) gp100/pmel 17 is a murine tumor rejection antigen: induction of “self”-reactive, tumoricidal T cells using high-affinity, altered peptide ligand. J Exp Med 188(2):277–286

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Zois CE, Koukourakis MI (2009) Radiation-induced autophagy in normal and cancer cells: towards novel cytoprotection and radio-sensitization policies? Autophagy 5(4):442–450

    Article  PubMed  CAS  Google Scholar 

  37. Hiniker SM, Chen DS, Reddy S, Chang DT, Jones JC, Mollick JA, Swetter SM, Knox SJ (2012) A systemic complete response of metastatic melanoma to local radiation and immunotherapy. Transl Oncol 5(6):404–407

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kroemer G, Galluzzi L, Kepp O, Zitvogel L (2013) Immunogenic cell death in cancer therapy. Annu Rev Immunol 31:51–72. doi:10.1146/annurev-immunol-032712-100008

    Article  PubMed  CAS  Google Scholar 

  39. Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P (2012) Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer 12(12):860–875. doi:10.1038/nrc3380

    Article  PubMed  CAS  Google Scholar 

  40. Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, Mignot G, Maiuri MC, Ullrich E, Saulnier P, Yang H, Amigorena S, Ryffel B, Barrat FJ, Saftig P, Levi F, Lidereau R, Nogues C, Mira JP, Chompret A, Joulin V, Clavel-Chapelon F, Bourhis J, Andre F, Delaloge S, Tursz T, Kroemer G, Zitvogel L (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13(9):1050–1059

    Article  PubMed  CAS  Google Scholar 

  41. Garg AD, Krysko DV, Verfaillie T, Kaczmarek A, Ferreira GB, Marysael T, Rubio N, Firczuk M, Mathieu C, Roebroek AJ, Annaert W, Golab J, de Witte P, Vandenabeele P, Agostinis P (2012) A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. EMBO J 31(5):1062–1079. doi:10.1038/emboj.2011.497

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Teitz-Tennenbaum S, Li Q, Okuyama R, Davis MA, Sun R, Whitfield J, Knibbs RN, Stoolman LM, Chang AE (2008) Mechanisms involved in radiation enhancement of intratumoral dendritic cell therapy. J Immunother 31(4):345–358. doi:10.1097/CJI.0b013e318163628c

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gannage M, Buzyn A, Bogiatzi SI, Lambert M, Soumelis V, Dal Cortivo L, Cavazzana-Calvo M, Brousse N, Caillat-Zucman S (2008) Induction of NKG2D ligands by gamma radiation and tumor necrosis factor-alpha may participate in the tissue damage during acute graft-versus-host disease. Transplantation 85(6):911–915. doi:10.1097/TP.0b013e31816691ef

    Article  PubMed  CAS  Google Scholar 

  44. Kim JY, Son YO, Park SW, Bae JH, Chung JS, Kim HH, Chung BS, Kim SH, Kang CD (2006) Increase of NKG2D ligands and sensitivity to NK cell-mediated cytotoxicity of tumor cells by heat shock and ionizing radiation. Exp Mol Med 38(5):474–484. doi:10.1038/emm.2006.56

    Article  PubMed  CAS  Google Scholar 

  45. Stinauer MA, Kavanagh BD, Schefter TE, Gonzalez R, Flaig T, Lewis K, Robinson W, Chidel M, Glode M, Raben D (2011) Stereotactic body radiation therapy for melanoma and renal cell carcinoma: impact of single fraction equivalent dose on local control. Radiat Oncol 6:34. doi:10.1186/1748-717X-6-34

    Article  PubMed  PubMed Central  Google Scholar 

  46. van Elsas A, Hurwitz AA, Allison JP (1999) Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J Exp Med 190(3):355–366

    Article  PubMed  PubMed Central  Google Scholar 

  47. Martins I, Michaud M, Sukkurwala AQ, Adjemian S, Ma Y, Shen S, Kepp O, Menger L, Vacchelli E, Galluzzi L, Zitvogel L, Kroemer G (2012) Premortem autophagy determines the immunogenicity of chemotherapy-induced cancer cell death. Autophagy 8(3):413–415. doi:10.4161/auto.19009

    Article  PubMed  CAS  Google Scholar 

  48. Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P, Shen S, Kepp O, Scoazec M, Mignot G, Rello-Varona S, Tailler M, Menger L, Vacchelli E, Galluzzi L, Ghiringhelli F, di Virgilio F, Zitvogel L, Kroemer G (2011) Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334(6062):1573–1577. doi:10.1126/science.1208347

    Article  PubMed  CAS  Google Scholar 

  49. Lin SX, Mallet WG, Huang AY, Maxfield FR (2004) Endocytosed cation-independent mannose 6-phosphate receptor traffics via the endocytic recycling compartment en route to the trans-Golgi network and a subpopulation of late endosomes. Mol Biol Cell 15(2):721–733. doi:10.1091/mbc.E03-07-0497

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Ravikumar B, Moreau K, Jahreiss L, Puri C, Rubinsztein DC (2010) Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat Cell Biol 12(8):747–757. doi:10.1038/ncb2078

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Ravikumar B, Moreau K, Rubinsztein DC (2010) Plasma membrane helps autophagosomes grow. Autophagy 6(8):1184–1186. doi:10.4161/auto.6.8.13428

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Zhang H, Xie Y, Li W, Chibbar R, Xiong S, Xiang J (2011) CD4(+) T cell-released exosomes inhibit CD8(+) cytotoxic T-lymphocyte responses and antitumor immunity. Cell Mol Immunol 8(1):23–30. doi:10.1038/cmi.2010.59

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Jeffrey Weber for critical reading of the manuscript. This work was supported in part by pilot funds from Donald A. Adam Comprehensive Melanoma Research Center at H. Lee Moffitt Cancer Center and by NIH grant CA168536 to Dmitry I. Gabrilovich. This work was supported in part by microscopy core of H. Lee Moffitt Cancer Center.

Conflict of interest

Authors declare no conflicts of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry I. Gabrilovich.

Additional information

Sungjune Kim and Rupal Ramakrishnan have equally contributed to the work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 99 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Ramakrishnan, R., Lavilla-Alonso, S. et al. Radiation-induced autophagy potentiates immunotherapy of cancer via up-regulation of mannose 6-phosphate receptor on tumor cells in mice. Cancer Immunol Immunother 63, 1009–1021 (2014). https://doi.org/10.1007/s00262-014-1573-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-014-1573-4

Keywords

Navigation