Skip to main content
Log in

Bioactive compounds or metabolites from black raspberries modulate T lymphocyte proliferation, myeloid cell differentiation and Jak/STAT signaling

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Bioactive phytochemicals from natural products, such as black raspberries (BRB; Rubus occidentalis), have direct anticancer properties on malignant cells in culture and in xenograft models. BRB components inhibit cancer progression in more complex rodent carcinogenesis models. Although mechanistic targets for BRB phytochemicals in cancer cells are beginning to emerge, the potential role in modulating host immune processes impacting cancer have not been systematically examined. We hypothesized that BRB contain compounds capable of eliciting potent immunomodulatory properties that impact cellular mediators relevant to chronic inflammation and tumor progression. We studied both an ethanol extract from black raspberries (BRB-E) containing a diverse mixture of phytochemicals and two abundant phytochemical metabolites of BRB produced upon ingestion (Cyanidin-3-Rutinoside, C3R; Quercitin-3-Rutinoside, Q3R). BRB-E inhibited proliferation, and viability of CD3/CD28 activated human CD4+ and CD8+ T lymphocytes. BRB-E also limited in vitro expansion of myeloid-derived suppressor cells (MDSC) and their suppressive capacity. Pre-treatment of immune cells with BRB-E attenuated IL-6-mediated phosphorylation of signal transducer and activator of transcription-3 (STAT3) and IL-2-induced STAT5 phosphorylation. In contrast, pre-treatment of immune cells with the C3R and Q3R metabolites inhibited MDSC expansion, IL-6-mediated STAT3 signaling, but not IL-2-induced STAT5 phosphorylation and were less potent inhibitors of T cell viability. Together these data indicate that BRB extracts and their physiologically relevant metabolites contain phytochemicals that affect immune processes relevant to carcinogenesis and immunotherapy. Furthermore, specific BRB components and their metabolites may be a source of lead compounds for drug development that exhibits targeted immunological outcomes or inhibition of specific STAT-regulated signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BRB:

Black raspberry

BRB-E:

Black raspberry extract

C3R:

Cyanidin-3-Rutinoside

MDSC:

Myeloid-derived suppressor cell

Q3R:

Quercitin-3-rutinoside

STAT3:

Signal transducer and activator of transcription 3

STAT5:

Signal transducer and activator of transcription 5

References

  1. Pavia M, Pileggi C, Nobile CG, Angelillo IF (2006) Association between fruit and vegetable consumption and oral cancer: a meta-analysis of observational studies. Am J Clin Nutr 83(5):1126–1134

    CAS  PubMed  Google Scholar 

  2. Casto BC, Kresty LA, Kraly CL, Pearl DK, Knobloch TJ, Schut HA, Stoner GD, Mallery SR, Weghorst CM (2002) Chemoprevention of oral cancer by black raspberries. Anticancer Res 22(6C):4005–4015

    CAS  PubMed  Google Scholar 

  3. Han C, Ding H, Casto B, Stoner GD, D’Ambrosio SM (2005) Inhibition of the growth of premalignant and malignant human oral cell lines by extracts and components of black raspberries. Nutr Cancer 51(2):207–217. doi:10.1207/s15327914nc5102_11

    Article  CAS  PubMed  Google Scholar 

  4. Rodrigo KA, Rawal Y, Renner RJ, Schwartz SJ, Tian Q, Larsen PE, Mallery SR (2006) Suppression of the tumorigenic phenotype in human oral squamous cell carcinoma cells by an ethanol extract derived from freeze-dried black raspberries. Nutr Cancer 54(1):58–68. doi:10.1207/s15327914nc5401_7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Zhang Z, Knobloch TJ, Seamon LG, Stoner GD, Cohn DE, Paskett ED, Fowler JM, Weghorst CM (2011) A black raspberry extract inhibits proliferation and regulates apoptosis in cervical cancer cells. Gynecol Oncol 123(2):401–406. doi:10.1016/j.ygyno.2011.07.023

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Lechner JF, Reen RK, Dombkowski AA, Cukovic D, Salagrama S, Wang LS, Stoner GD (2008) Effects of a black raspberry diet on gene expression in the rat esophagus. Nutr Cancer 60(Suppl 1):61–69. doi:10.1080/01635580802393118

    Article  PubMed  Google Scholar 

  7. Mallery SR, Zwick JC, Pei P, Tong M, Larsen PE, Shumway BS, Lu B, Fields HW, Mumper RJ, Stoner GD (2008) Topical application of a bioadhesive black raspberry gel modulates gene expression and reduces cyclooxygenase 2 protein in human premalignant oral lesions. Cancer Res 68(12):4945–4957. doi:10.1158/0008-5472.CAN-08-0568

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Kalos M, June CH (2013) Adoptive T cell transfer for cancer immunotherapy in the era of synthetic biology. Immunity 39(1):49–60. doi:10.1016/j.immuni.2013.07.002

    Article  CAS  PubMed  Google Scholar 

  9. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264. doi:10.1038/nrc3239

    Article  CAS  PubMed  Google Scholar 

  10. Bates GJ, Fox SB, Han C, Leek RD, Garcia JF, Harris AL, Banham AH (2006) Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol 24(34):5373–5380. doi:10.1200/JCO.2006.05.9584

    Article  PubMed  Google Scholar 

  11. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, Zhu Y, Wei S, Kryczek I, Daniel B, Gordon A, Myers L, Lackner A, Disis ML, Knutson KL, Chen L, Zou W (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10(9):942–949. doi:10.1038/nm1093

    Article  CAS  PubMed  Google Scholar 

  12. Hiraoka N, Onozato K, Kosuge T, Hirohashi S (2006) Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin Cancer Res 12(18):5423–5434. doi:10.1158/1078-0432.CCR-06-0369

    Article  CAS  PubMed  Google Scholar 

  13. Vaid M, Singh T, Li A, Katiyar N, Sharma S, Elmets CA, Xu H, Katiyar SK (2011) Proanthocyanidins inhibit UV-induced immunosuppression through IL-12-dependent stimulation of CD8+ effector T cells and inactivation of CD4+ T cells. Cancer Prev Res (Phila) 4(2):238–247. doi:10.1158/1940-6207.CAPR-10-0224

    Article  CAS  Google Scholar 

  14. Vaid M, Singh T, Prasad R, Elmets CA, Xu H, Katiyar SK (2013) Bioactive grape proanthocyanidins enhance immune reactivity in UV-irradiated skin through functional activation of dendritic cells in mice. Cancer Prev Res (Phila) 6(3):242–252. doi:10.1158/1940-6207.CAPR-12-0320

    Article  CAS  Google Scholar 

  15. Duncan FJ, Martin JR, Wulff BC, Stoner GD, Tober KL, Oberyszyn TM, Kusewitt DF, Van Buskirk AM (2009) Topical treatment with black raspberry extract reduces cutaneous UVB-induced carcinogenesis and inflammation. Cancer Prev Res (Phila) 2(7):665–672. doi:10.1158/1940-6207.CAPR-08-0193

    Article  CAS  Google Scholar 

  16. Kim G, Jang MS, Son YM, Seo MJ, Ji SY, Han SH, Jung ID, Park YM, Jung HJ, Yun CH (2013) Curcumin inhibits CD4(+) T cell activation, but augments CD69 expression and TGF-beta1-mediated generation of regulatory T cells at late phase. PLoS ONE 8(4):e62300. doi:10.1371/journal.pone.0062300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9(11):798–809. doi:10.1038/nrc2734

    Article  CAS  PubMed  Google Scholar 

  18. Ostrand-Rosenberg S, Sinha P (2009) Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 182(8):4499–4506. doi:10.4049/jimmunol.0802740

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Sullivan NJ, Tober KL, Burns EM, Schick JS, Riggenbach JA, Mace TA, Bill MA, Young GS, Oberyszyn TM, Lesinski GB (2011) UV light B-mediated inhibition of skin catalase activity promotes Gr-1(+)CD11b(+) myeloid cell expansion. J Invest Dermatol 132(3 Pt 1):695–702. doi:10.1038/jid.2011.329

    PubMed Central  PubMed  Google Scholar 

  20. Gabitass RF, Annels NE, Stocken DD, Pandha HA, Middleton GW (2011) Elevated myeloid-derived suppressor cells in pancreatic, esophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the Th2 cytokine interleukin-13. Cancer Immunol Immunother 60(10):1419–1430. doi:10.1007/s00262-011-1028-0

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Mundy-Bosse BL, Young GS, Bauer T, Binkley E, Bloomston M, Bill MA, Bekaii-Saab T, Carson WE 3rd, Lesinski GB (2011) Distinct myeloid suppressor cell subsets correlate with plasma IL-6 and IL-10 and reduced interferon-alpha signaling in CD4(+) T cells from patients with GI malignancy. Cancer Immunol Immunother 60(9):1269–1279. doi:10.1007/s00262-011-1029-z

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Yan HH, Pickup M, Pang Y, Gorska AE, Li Z, Chytil A, Geng Y, Gray JW, Moses HL, Yang L (2010) Gr-1+ CD11b+ myeloid cells tip the balance of immune protection to tumor promotion in the premetastatic lung. Cancer Res 70(15):6139–6149. doi:10.1158/0008-5472.CAN-10-0706

    Article  CAS  PubMed  Google Scholar 

  23. Lathers DM, Clark JI, Achille NJ, Young MR (2004) Phase 1B study to improve immune responses in head and neck cancer patients using escalating doses of 25-hydroxyvitamin D3. Cancer Immunol Immunother 53(5):422–430. doi:10.1007/s00262-003-0459-7

    Article  CAS  PubMed  Google Scholar 

  24. Tu SP, Jin H, Shi JD, Zhu LM, Suo Y, Lu G, Liu A, Wang TC, Yang CS (2012) Curcumin induces the differentiation of myeloid-derived suppressor cells and inhibits their interaction with cancer cells and related tumor growth. Cancer Prev Res (Phila) 5(2):205–215. doi:10.1158/1940-6207.CAPR-11-0247

    Article  CAS  Google Scholar 

  25. Santilli G, Piotrowska I, Cantilena S, Chayka O, D’Alicarnasso M, Morgenstern DA, Himoudi N, Pearson K, Anderson J, Thrasher AJ, Sala A (2013) Polyphenol E enhances the antitumor immune response in neuroblastoma by inactivating myeloid suppressor cells. Clin Cancer Res 19(5):1116–1125. doi:10.1158/1078-0432.CCR-12-2528

    Article  CAS  PubMed  Google Scholar 

  26. Sinha P, Ostrand-Rosenberg S (2013) Myeloid-derived suppressor cell function is reduced by Withaferin A, a potent and abundant component of Withania somnifera root extract. Cancer Immunol Immunother 62(11):1663–1673. doi:10.1007/s00262-013-1470-2

    Article  CAS  PubMed  Google Scholar 

  27. Tulio AZ Jr, Reese RN, Wyzgoski FJ, Rinaldi PL, Fu R, Scheerens JC, Miller AR (2008) Cyanidin 3-rutinoside and cyanidin 3-xylosylrutinoside as primary phenolic antioxidants in black raspberry. J Agric Food Chem 56(6):1880–1888. doi:10.1021/jf072313k

    Article  CAS  PubMed  Google Scholar 

  28. Wang LS, Hecht SS, Carmella SG, Yu N, Larue B, Henry C, McIntyre C, Rocha C, Lechner JF, Stoner GD (2009) Anthocyanins in black raspberries prevent esophageal tumors in rats. Cancer Prev Res (Phila) 2(1):84–93. doi:10.1158/1940-6207.CAPR-08-0155

    Article  CAS  Google Scholar 

  29. Lechner MG, Liebertz DJ, Epstein AL (2010) Characterization of cytokine-induced myeloid-derived suppressor cells from normal human peripheral blood mononuclear cells. J Immunol 185(4):2273–2284. doi:10.4049/jimmunol.1000901

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Mace TA, Ameen Z, Collins A, Wojcik S, Mair M, Young GS, Fuchs JR, Eubank TD, Frankel WL, Bekaii-Saab T, Bloomston M, Lesinski GB (2013) Pancreatic cancer-associated stellate cells promote differentiation of myeloid-derived suppressor cells in a STAT3-dependent manner. Cancer Res 73(10):3007–3018. doi:10.1158/0008-5472.CAN-12-4601

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Choi JS, Kang SW, Li J, Kim JL, Bae JY, Kim DS, Shin SY, Jun JG, Wang MH, Kang YH (2009) Blockade of oxidized LDL-triggered endothelial apoptosis by quercetin and rutin through differential signaling pathways involving JAK2. J Agric Food Chem 57(5):2079–2086. doi:10.1021/jf803390m

    Article  CAS  PubMed  Google Scholar 

  32. Luo X, Fang S, Xiao Y, Song F, Zou T, Wang M, Xia M, Ling W (2012) Cyanidin-3-glucoside suppresses TNF-alpha-induced cell proliferation through the repression of Nox activator 1 in mouse vascular smooth muscle cells: involvement of the STAT3 signaling. Mol Cell Biochem 362(1–2):211–218. doi:10.1007/s11010-011-1144-3

    Article  CAS  PubMed  Google Scholar 

  33. Erlund I, Freese R, Marniemi J, Hakala P, Alfthan G (2006) Bioavailability of quercetin from berries and the diet. Nutr Cancer 54(1):13–17. doi:10.1207/s15327914nc5401_3

    Article  CAS  PubMed  Google Scholar 

  34. Seeram NP, Adams LS, Zhang Y, Lee R, Sand D, Scheuller HS, Heber D (2006) Blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry extracts inhibit growth and stimulate apoptosis of human cancer cells in vitro. J Agric Food Chem 54(25):9329–9339. doi:10.1021/jf061750g

    Article  CAS  PubMed  Google Scholar 

  35. Anderson JG, Taylor AG (2012) Use of complementary therapies for cancer symptom management: results of the 2007 National Health Interview Survey. J Altern Complement Med 18(3):235–241. doi:10.1089/acm.2011.0022

    Article  PubMed Central  PubMed  Google Scholar 

  36. Mentor-Marcel RA, Bobe G, Sardo C, Wang LS, Kuo CT, Stoner G, Colburn NH (2012) Plasma cytokines as potential response indicators to dietary freeze-dried black raspberries in colorectal cancer patients. Nutr Cancer 64(6):820–825. doi:10.1080/01635581.2012.697597

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Montrose DC, Horelik NA, Madigan JP, Stoner GD, Wang LS, Bruno RS, Park HJ, Giardina C, Rosenberg DW (2011) Anti-inflammatory effects of freeze-dried black raspberry powder in ulcerative colitis. Carcinogenesis 32(3):343–350. doi:10.1093/carcin/bgq248

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Kresty LA, Frankel WL, Hammond CD, Baird ME, Mele JM, Stoner GD, Fromkes JJ (2006) Transitioning from preclinical to clinical chemopreventive assessments of lyophilized black raspberries: interim results show berries modulate markers of oxidative stress in Barrett’s esophagus patients. Nutr Cancer 54(1):148–156. doi:10.1207/s15327914nc5401_15

    Article  CAS  PubMed  Google Scholar 

  39. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174. doi:10.1038/nri2506

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Kodumudi KN, Woan K, Gilvary DL, Sahakian E, Wei S, Djeu JY (2010) A novel chemoimmunomodulating property of docetaxel: suppression of myeloid-derived suppressor cells in tumor bearers. Clin Cancer Res 16(18):4583–4594. doi:10.1158/1078-0432.CCR-10-0733

    Article  CAS  PubMed  Google Scholar 

  41. Kusmartsev S, Cheng F, Yu B, Nefedova Y, Sotomayor E, Lush R, Gabrilovich D (2003) All-trans-retinoic acid eliminates immature myeloid cells from tumor-bearing mice and improves the effect of vaccination. Cancer Res 63(15):4441–4449

    CAS  PubMed  Google Scholar 

  42. Ko JS, Zea AH, Rini BI, Ireland JL, Elson P, Cohen P, Golshayan A, Rayman PA, Wood L, Garcia J, Dreicer R, Bukowski R, Finke JH (2009) Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin Cancer Res 15(6):2148–2157. doi:10.1158/1078-0432.CCR-08-1332

    Article  CAS  PubMed  Google Scholar 

  43. Duarte S, Gregoire S, Singh AP, Vorsa N, Schaich K, Bowen WH, Koo H (2006) Inhibitory effects of cranberry polyphenols on formation and acidogenicity of Streptococcus mutans biofilms. FEMS Microbiol Lett 257(1):50–56. doi:10.1111/j.1574-6968.2006.00147.x

    Article  CAS  PubMed  Google Scholar 

  44. Palikova I, Heinrich J, Bednar P, Marhol P, Kren V, Cvak L, Valentova K, Ruzicka F, Hola V, Kolar M, Simanek V, Ulrichova J (2008) Constituents and antimicrobial properties of blue honeysuckle: a novel source for phenolic antioxidants. J Agric Food Chem 56(24):11883–11889

    Article  CAS  PubMed  Google Scholar 

  45. Seeram NP (2008) Berry fruits for cancer prevention: current status and future prospects. J Agric Food Chem 56(3):630–635. doi:10.1021/jf072504n

    Article  CAS  PubMed  Google Scholar 

  46. Lee KW, Lee HJ (2006) The roles of polyphenols in cancer chemoprevention. BioFactors 26(2):105–121

    Article  CAS  PubMed  Google Scholar 

  47. Li N, Grivennikov SI, Karin M (2011) The unholy trinity: inflammation, cytokines, and STAT3 shape the cancer microenvironment. Cancer Cell 19(4):429–431. doi:10.1016/j.ccr.2011.03.018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Ohio State Comprehensive Cancer Center (OSUCCC) Analytical Cytometry, Biostatistics Shared Resources and Nutrient and Phytochemical Analytical Shared Resource (NPASR). Supported by NIH grants 5T32CA009338-34, UL1 RR025755, P30 CA016058, 1R01 CA 169363-01, the Ohio Agricultural Research and Development Center (OARDC), The Center for Advanced Functional Foods Research and Entrepreneurship (CAFFRE), The Food Innovation Center, The OSUCCC Molecular Carcinogenesis and Chemoprevention Program. This work was also supported by the Pelotonia Fellowship Program. Any opinions, findings, and conclusions expressed in this material are those of the authors and do not necessarily reflect those of the Pelotonia Fellowship Program.

Conflict of interest

G Lesinski receives research funding from Prometheus, Inc., Karyopharm Therapeutics, Inc., Oncolytics, Inc, and Array Biopharma, Inc. G Lesinski serves as a Consultant for Ono Pharmaceuticals, Inc. G Lesinski has no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed. All other authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory B. Lesinski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 80 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mace, T.A., King, S.A., Ameen, Z. et al. Bioactive compounds or metabolites from black raspberries modulate T lymphocyte proliferation, myeloid cell differentiation and Jak/STAT signaling. Cancer Immunol Immunother 63, 889–900 (2014). https://doi.org/10.1007/s00262-014-1564-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-014-1564-5

Keywords

Navigation