, Volume 61, Issue 8, pp 1307-1317

TriVax-HPV: an improved peptide-based therapeutic vaccination strategy against human papillomavirus-induced cancers

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access



Therapeutic vaccines for cancer are an attractive alternative to conventional therapies, since the later result in serious adverse effects and in most cases are not effective against advanced disease. Human papillomavirus (HPV) is responsible for several malignancies such as cervical carcinoma. Vaccines targeting oncogenic viral proteins like HPV16-E6 and HPV16-E7 are ideal candidates to elicit strong immune responses without generating autoimmunity because: (1) these products are not expressed in normal cells and (2) their expression is required to maintain the malignant phenotype. Our group has developed peptide vaccination strategy called TriVax, which is effective in generating vast numbers of antigen-specific T cells in mice capable of persisting for long time periods.

Materials and methods

We have used two HPV-induced mouse cancer models (TC-1 and C3.43) to evaluate the immunogenicity and therapeutic efficacy of TriVax prepared with the immunodominant CD8 T-cell epitope HPV16-E749-57, mixed with poly-IC adjuvant and costimulatory anti-CD40 antibodies.


TriVax using HPV16-E749-57 induced large and persistent T-cell responses that were therapeutically effective against established HPV16-E7 expressing tumors. In most cases, TriVax was successful in attaining complete rejections of 6–11-day established tumors. In addition, TriVax induced long-term immunological memory, which prevented tumor recurrences. The anti-tumor effects of TriVax were independent of NK and CD4 T cells and, surprisingly, did not rely to a great extent on type-I or type-II interferon.


These findings indicate that the TriVax strategy is an appealing immunotherapeutic approach for the treatment of established viral-induced tumors. We believe that these studies may help to launch more effective and less invasive therapeutic vaccines for HPV-mediated malignancies.

This paper is a Focussed Research Review based on a presentation given at the 11th International Conference on Progress in Vaccination against Cancer (PIVAC 11), held in Copenhagen, Denmark, 10th–13th October 2011. It is part of a CII series of Focussed Research Reviews and meeting report.
Focussed Research Reviews are primarily intended to review the author’s own work in a particular area, based on a presentation given at a meeting and containing both published and unpublished material. Please note that this article consists only of original, not previously published, research. As with all other material published in Cancer Immunology, Immunotherapy, including Focussed Research Reviews, it has undergone the journal's regular peer review process.