, Volume 61, Issue 6, pp 827-838
Date: 12 Nov 2011

Myeloid-derived suppressor cells impair the quality of dendritic cell vaccines

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Myeloid-derived suppressor cells (MDSC) are important regulators of the immune system and key players in tumor-induced suppression of T-cell responses. CD14+HLA-DR−/low MDSC have been detected in a great number of malignancies, including melanoma. MDSC are known to be impaired in their ability to differentiate along the myeloid lineage, e.g., into dendritic cells (DC). This is a concern for utilization of monocyte-derived DC for vaccination of patients with melanoma or other cancers exhibiting accumulation of CD14+ MDSC. When producing DC according to standard operating procedures of two currently ongoing clinical trials, we found that MDSC co-purified with monocytes isolated by elutriation. MDSC frequencies did not affect yield or viability of the produced DC, but induced a dose-dependent decrease in DC maturation, ability to take up antigen, migrate and induce T-cell IFNγ production. Changes in DC characteristics were most notable when ‘pathological’ frequencies of >50% CD14+HLA-DR− cells were present in the starting culture. The impaired DC quality could not be explained by altered cytokine production or increased oxidative stress in the cultures. Tracking of HLA-DR− cells throughout the culture period revealed that the observed changes were partially due to the impaired maturation and functionality of the originally HLA-DR− population, but also to their negative effects on HLA-DR+ cells. In conclusion, MDSC could be induced to differentiate into DC but, due to the impairment of overall DC vaccine quality when >50% HLA-DR− cells were present in the starting culture, their removal could be advisable.