, Volume 60, Issue 1, pp 123-131

Resistance to the proapoptotic effects of interferon-gamma on melanoma cells used in patient-specific dendritic cell immunotherapy is associated with improved overall survival

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


The use of whole cell tumor vaccines and various means of loading antigen onto dendritic cells have been under investigation for over a decade. Induction of apoptosis and the exposure of immune-stimulating proteins are thought to be beneficial for the use in immunotherapy protocols, but conclusive evidence in the clinical setting has been lacking. Incubation of melanoma cell lines with interferon-gamma (IFN-γ) increased phosphatidylserine and calreticulin exposure, but not in the IFN-γ-resistant cell line Lu-1205. Short-term autologous melanoma cell lines used for loading dendritic cells for immunotherapy showed differential response to the pro-apoptotic effects of IFN-γ. These IFN-γ-treated tumor cells (TCs) were irradiated and used for loading antigen for dendritic cell therapy. A log-rank comparison of survival for patients whose TCs were found to be either sensitive (upregulated phosphatidylserine and calreticulin) or insensitive to IFN-γ revealed a strongly significant correlation to progression-free (p = 0.003) and overall survival (p = 0.002) favorably in those patients whose cell lines were resistant to the proapoptotic effect of IFN-γ. These results suggest that the use of IFN-γ in anti-melanoma dendritic cell-based immunotherapy may only be beneficial when the cells do not undergo apoptosis in response to IFN-γ and support the contention that the use of some apoptotic cells in vaccines may be detrimental.