Skip to main content

Advertisement

Log in

Characteristics of the killing mechanism of human natural killer cells against hepatocellular carcinoma cell lines HepG2 and Hep3B

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Purpose

Unlike normal hepatocytes, most hepatocellular carcinomas (HCCs) are quite resistant to death receptor-mediated apoptosis when the cell surface death receptor is cross linked with either agonistic antibodies or soluble death ligand proteins in vitro. The resistance might play an essential role in the escape from the host immune surveillance; however, it has not been directly demonstrated that HCCs are actually resistant to natural killer (NK) cell-mediated death. Therefore, this study investigated the molecular mechanism of NK cell-mediated cytotoxicity against the HCCs, HepG2, and Hep3B, using two distinct cytotoxic assays: a 4-h 51Cr-release assay and a 2-h [3H] thymidine release assay which selectively measures the extent of necrotic and apoptotic target cell death, respectively.

Methods

Most of the target cells exhibited marked morphologic changes when they were co-incubated with the NK cells, and the NK cytotoxicity against these HCCs was comparable to that against K562, a NK-sensitive leukemia cell line, when the cytotoxicity was assessed by a 4-h 51Cr release assay.

Results

The NK cells also induced significant apoptotic cell death in the Hep3B targets, but not in the HepG2 targets, when the cytotoxicity was assessed by a 2-h [3H]-thymidine release assay. In agreement with these results, procaspase-3 was activated in the Hep3B targets, but not in the HepG2 targets. Interestingly, mildly fixed NK cells had no detectable activity in the 4-h 51Cr release assay against both HepG2 and Hep3B targets, while they were similarly effective as the untreated NK cells in the 2-h [3H]-thymidine release assay, suggesting that the level of apoptotic cell death of the Hep3B targets is granule independent and might be primarily mediated by the death ligands of the NK cells.

Conclusion

This study found that a tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)/TRAIL receptor interaction is involved in the NK cell-mediated apoptotic death of the Hep3B targets, but a Fas/Fas ligand (FasL) interaction is not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4A, B
Fig. 5A, B
Fig. 6A, B
Fig. 7A, B
Fig. 8A, B

Similar content being viewed by others

References

  1. Arase H, Arase N, Saito T (1995) Fas-mediated cytotoxicity by freshly isolated natural killer cells. J Exp Med 181:1235

    CAS  PubMed  Google Scholar 

  2. Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281:1305

    Article  PubMed  Google Scholar 

  3. Chuang W, Liu HW, Chang WY (1990) Natural killer cell activity in patients with hepatocellular carcinoma relative to early development and tumor invasion. Cancer 65:926

    CAS  PubMed  Google Scholar 

  4. Duke RC, Chervenak R, Cohen JJ (1983) Endogenous endonuclease-induced DNA fragmentation: an early event in cell-mediated cytolysis. Proc Natl Acad Sci USA 80:6361

    CAS  PubMed  Google Scholar 

  5. Earnshaw WC, Martins LM, Kaufmann SH (1999) Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 68:383

    CAS  PubMed  Google Scholar 

  6. Feldmann G (1997) Liver Apoptosis. J Hepatol 26:1

    Article  CAS  Google Scholar 

  7. Fernandes-Alnemri T, Litwack G, Alnemri ES (1994) CPP32: a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-1 beta-converting enzyme. J Biol Chem 269:30761

    CAS  PubMed  Google Scholar 

  8. Galle PR, Hofmann WJ, Walczak H, Schller H, Otto G, Stremmel W, Krammer PH, Runkel L (1995) Involvement of the CD95 (APO-1/Fas) receptor and ligand in liver damage. J Exp Med 182:1223

    CAS  PubMed  Google Scholar 

  9. Galle PR, Krammer PH (1998) CD95-induced apoptosis in human liver disease. Semin Liver Dis 18:141

    CAS  PubMed  Google Scholar 

  10. Gorelik E, Rosen B, Copeland D, Weatherly B, Herberman RB (1984) Evaluation of the role of natural killer cells in radiation-induced leukemogenesis in mice. J Natl Cancer Inst 72:1397

    Google Scholar 

  11. Higaki K, Yano H, Kojiro M (1996) Fas antigen expression and its relationship with apoptosis in human hepatocellular carcinoma and noncancerous tissues. Am J Pathol 149:429

    CAS  PubMed  Google Scholar 

  12. Hirofuji H, Kakumu S, Fiji A, Ohtani Y, Murase K, Tahara H (1987) Natural killer and activated killer activities in chronic liver disease and hepatocellular carcinoma: evidence for a decreased lymphokine induced activity of effector cells. Clin Exp Immunol 68:348

    CAS  PubMed  Google Scholar 

  13. Holcik M, Gibson H, Korneluk RG (2001) XIAP: apoptotic brake and promissing therapeutic target. Apoptosis 6:253

    Article  CAS  PubMed  Google Scholar 

  14. Irmler M, Thome M, Hahne M, Schneider P, Hofmann K, Steiner V, Bodmer JL, Schroter M, Burns K, Mattmann C, Rimoldi D, French LE, Tschopp J (1997) Inhibition of death receptor signals by cellular FLIP. Nature 388:190

    CAS  PubMed  Google Scholar 

  15. Jo M, Kim TH, Seol DW, Esplen JE, Dorko K, Billiar TR, Strom SC (2000) Apoptosis induced in normal human hepatocytes by tumor necrosis factor-related apoptosis-inducing ligand. Nat Med 6:564

    CAS  PubMed  Google Scholar 

  16. Kagi D, Ledermann B, Burki K, Seiler P, Odermatt B, Olsen KJ, Podack ER, Zinkernagel RM, Hengartner H (1994) Cytotoxicity mediated by T-cells and natural killer cells is greatly impaired in perforin deficient mice. Nature 369:31

    CAS  PubMed  Google Scholar 

  17. Kashii Y, Giorda R, Herberman RB, Whiteside TL, Vujanovic NL (1999) Constitutive expression and role of the TNF family ligands in apoptotic killing of tumor cells by human NK cells. J Immunol 163:5358

    CAS  PubMed  Google Scholar 

  18. Kayagaki N, Yamaguchi N, Nakayama M, Takeda K, Akiba H, Tsutsui H, Okamura H, Nakanishi K, Okumura K, Yagita H (1999) Expression and function of TNF-related apoptosis-inducing ligand on murine activates NK cells. J Immunol 163:1906

    CAS  PubMed  Google Scholar 

  19. Kim YS, Schwabe RF, Qian T, Lemasters JJ, Brenner DA (2002) TRAIL-mediated apoptosis requires NF-kB inhibition and the mitochondrial permeability transition in human hepatoma cells. Hepatology 36:1498

    Article  CAS  PubMed  Google Scholar 

  20. Kondo T, Suda T, Fukuyama H, Adachi M, Nagata S (1997) Essential roles of the Fas ligand in the development of hepatitis. Nat Med 3:409

    CAS  PubMed  Google Scholar 

  21. Kurt-Jones EA, Beller DI, Mizel SB, Unanue ER (1985) Identification of a membrane associated interleukin 1 in macrophages. Proc Natl Acad Sci USA 82:1204

    CAS  PubMed  Google Scholar 

  22. Lamboley C, Bringuier AF, Camus E, Lardeux B, Groyer A, Feldmann G (2002) Overexpression of the mouse Fas gene in human Hep3B hepatoma cells overcomes their resistance to Fas-mediated apoptosis. J Hepatol 36:385

    Article  CAS  PubMed  Google Scholar 

  23. Lee RK, Spielman J, Zhao DY, Olsen KJ, Podack ER (1996) Perfolin, Fas ligand, and tumor necrosis factor are the major cytototoxic molecules used by lymphokine-activated killer cells. J Immunol 157:1919

    CAS  PubMed  Google Scholar 

  24. Leibson PJ (1997) Signal transduction during natural killer cell activation: inside the mind of a killer. Immunity 6:655

    CAS  PubMed  Google Scholar 

  25. Lowin B, Beermann F, Schmidt A, Tschopp J (1994) A null mutation in the perforin gene impairs cytolytic T lymphocyte- and natural killer cell-mediated cytotoxicity. Proc Natl Acad Sci USA 91:11571

    CAS  PubMed  Google Scholar 

  26. Matzinger P (1991) The JAM test: a simple assay for DNA fragmentation and cell death. J Immunol Methods 145:185

    CAS  PubMed  Google Scholar 

  27. Medema JP, de Jong J, Peltenburg LTC, Verdegaal EME, Gorter A, Bres SA, Franken KLMC, Hahne M, Albar JP, Melief CJM, Offringa R (2001) Blockade of the granzyme B/perforin pathway through overexpression of the serine protease inhibitor PI-9/SPI-6 constitutes a mechanism for immune escape by tumors. Proc Natl Acad Sci USA 98:11515

    Article  CAS  PubMed  Google Scholar 

  28. Montel AH, Bochan MR, Hobbs JA, Lynch DH, Brahmi Z (1995) Fas involvement in cytotoxicity mediated by human NK cells. Cell Immunol 166:236

    Article  CAS  PubMed  Google Scholar 

  29. Nagao M, Nakajima Y, Hisanaga M, Kayagaki N, Kanehiro H, Aomatsu Y, Ko S, Yagita H, Yamada T, Okumura K, Nakano H (1999) The alteration of Fas receptor and ligand system in hepatocellular carcinomas: How do hepatoma cells escape from the host immune surveillance in vivo? Hepatology 30:413

    CAS  PubMed  Google Scholar 

  30. Nakajima T, Mizushima N, Kanai K (1987) Relationship between natural killer activity and development of hepatocellular carcinoma in patients with cirrhosis of the liver. Jpn J Clin Oncol 17:327

    CAS  PubMed  Google Scholar 

  31. Natoli G, Ianni G, Costanzo A, Petrillo GD de, Ilari I, Chrillo P, Balsano C, Levrero M (1995) Resistance to Fas-mediated apoptosis in human hepatoma cells. Oncogene 11:1157

    CAS  PubMed  Google Scholar 

  32. Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M, Gareau Y, Griffin PR, Labelle M, Lazebnik YA, Munday NA, Raju SM, Smulson ME, Yamin TT, Yu VL, Miller D (1995) Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376:37

    CAS  PubMed  Google Scholar 

  33. Ogasawara J, Watanabe-Fukunaga R, Adachi M, Matsuzawa A, Kasugai T, Kitamura Y, Itoh N, Suda T, Nagata S (1993) Lethal effect of the anti-Fas antibody in mice. Nature 364:806

    CAS  PubMed  Google Scholar 

  34. Oshmi Y, Oda S, Honda Y, Nagata S, Miyazaki S (1996) Involvement of Fas ligand and Fas-mediated pathway in the cytotoxicity of human natural killer cells. J Immunol 157:2909

    PubMed  Google Scholar 

  35. Oshimi Y, Oshimi K, Miyazaki S (1996) Necrosis and apoptosis associated with distinct Ca2+ response patterns in target cells attacked by human natural killer cells. J Physiol 495:319

    CAS  PubMed  Google Scholar 

  36. Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A (1996) Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem 271:12687

    CAS  PubMed  Google Scholar 

  37. Podack ER, Hengartner H, Lichtenheld MG (1991) A central role of perforin in cytolysis? Annu Rev Immunol 9:129

    CAS  PubMed  Google Scholar 

  38. Riccardi C, Barlozzari CT, Santoni A, Herberman RB, Cesarini C (1981) Transfer of cyclophosphamide-treated mice of natural killer cells and in vivo natural reactivity against tumors. J Immunol 126:1284

    CAS  PubMed  Google Scholar 

  39. Rodella L, Zamai L, Rezzani R, Artico M, Peri G, Falconi M, Facchini A, Pelusi G, Vitale M (2001) Interleukin 2 and interleukin 15 differentially predispose natural killer cells to apoptosis mediated by endothelial and tumour cells. Br J Haematol 115:442

    Article  CAS  PubMed  Google Scholar 

  40. Sato T, Irie S, Kitada S, Reed JC (1995) FAP-1: a protein tyrosine phosphatase that associates with Fas. Science 268:411

    CAS  PubMed  Google Scholar 

  41. Screpanti V, Wallin RPA, Ljunggren HG, Grandien A (2001) A central role for death-receptor-mediated apoptosis in the rejection of tumors by NK cells. J Immunol 167:2068

    CAS  PubMed  Google Scholar 

  42. Shi L, Kraut RP, Aebersold R, Greenberg AH (1992) A natural killer cell granule protein that induces DNA fragmentation and apoptosis. J Exp Med 175:553

    CAS  PubMed  Google Scholar 

  43. Shin EC, Shin JS, Park JH, Kim JJ, Kim H, Kim S (1998) Expression of Fas-related genes in human hepatocellular carcinomas. Cancer Lett 134:155

    Article  CAS  PubMed  Google Scholar 

  44. Shin EC, Shin WC, Choi Y, Kim H, Park JH, Kim S (2001) Effect of interferon-γ on the susceptibility to Fas (CD95/APO-1)-mediated cell death in human hepatoma cells. Cancer Immunol Immunother 50:23

    Article  CAS  PubMed  Google Scholar 

  45. Shin EC, Seong YR, Kim CH, Kim H, Ahn YS, Kim K, Kim SJ, Hong SS, Park JH (2002) Human hepatocellular carcinoma cells resist to TRAIL-induced apoptosis, and the resistance is abolished by cisplatin. Exp Mol Med 34:114

    CAS  PubMed  Google Scholar 

  46. Smyth MJ, Trapani JA (1995) Granzymes: exogenous proteinases that induce target cell apoptosis. Immunol Today 16:202

    Article  CAS  PubMed  Google Scholar 

  47. Son K, Kew M, Rabson AR (1982) Depressed natural killer cell activity in patients with hepatocellular carcinoma. Cancer 50:2820

    CAS  PubMed  Google Scholar 

  48. Takeda K, Hayakawa Y, Smyth MJ, Kayagaki N, Yamaguchi N, Kakuta S, Iwakura Y, Yagita H, Okumura K (2001) Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells. Nat Med 7:94

    Article  CAS  PubMed  Google Scholar 

  49. Taketomi A, Shimada M, Shirabe K, Kajiyama K, Gion T, Sugimachi K (1998) Natural killer cell activity in patients with hepatocellular carcinoma: a new prognostic indicator after hepatectomy. Cancer 83:58

    Article  CAS  PubMed  Google Scholar 

  50. Trinchieri G (1989) Biology of natural killer cells. Adv Immunol 47:187

    CAS  PubMed  Google Scholar 

  51. Vujanovic NL, Nagashima S, Herberman RB, Whiteside TL (1996) Nonsecretory apoptotic killing by human NK cells. J Immunol 157:1117

    CAS  PubMed  Google Scholar 

  52. Wahlberg BJ, Burholt DR, Kornblith P, Richards TJ, Bruffsky A, Herberman RB, Vujanovic NL (2001) Measurement of NK activity by the microcytotoxicity assay (MCA): a new application for an old assay. J Immunol Methods 253:69

    Article  CAS  PubMed  Google Scholar 

  53. Walczak H, Miller RE, Ariail K, Gliniak B, Griffith TS, Kubin M, Chin W, Jones J, Woodward A, Le T, Smith C, Smolak P, Goodwin RG, Rauch CT, Schuh JC, Lynch DH (1999) Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 5:157

    Article  CAS  PubMed  Google Scholar 

  54. Walsh CM, Matloubian M, Liu CC, Ueda R, Kurahara CG, Christensen JL, Huang MT, Young JD, Ahmed R, Clark WR (1994) Immune function in mice lacking the perforin gene. Proc Natl Acad Sci USA 91:10854

    CAS  Google Scholar 

  55. Whiteside TL, Herberman RB (1995) The role of natural killer cells in immune surveillance of cancer. Curr Opin Immunol 7:704

    Article  CAS  PubMed  Google Scholar 

  56. Wiley SR, Schooley K, Smolak PJ, Din WS, Huang CP, Nicholl JK, Sutherland GR, Smith TD, Rauch C, Smith CA, Goodwin RG (1995) Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 3:673

    CAS  PubMed  Google Scholar 

  57. Wiltrout RH, Herberman RB, Zhang SR, Chirigos MA, Ortaldo JR, Green KM, Talmadge JE (1985) Role of organ-associated NK cells in decreased formation of experimental metastases in lung and liver. J Immunol 134:4267

    CAS  PubMed  Google Scholar 

  58. Woo M, Hakem R, Soengas MS, Duncan GS, Shahinian A, Kagi D, Hakem A, McCurrach M, Khoo W, Kaufman SA, Senaldi G, Howard T, Lowe SW, Mak TW (1998) Essential contribution of caspase 3/CPP32 to apoptosis and its associated nuclear changes. Genes Dev 12:806

    CAS  PubMed  Google Scholar 

  59. Yagita H, Nakata M, Kawasaki A, Shinkai Y, Okumura K (1992) Role of perforin in lymphocyte-mediated cytolysis. Adv Immunol 51:215

    CAS  PubMed  Google Scholar 

  60. Yamanaka T, Shiraki K, Sugimoto K, Ito T, Fujikawa K, Ito M, Takase K, Moriyama M, Nakano T, Suzuki A (2000) Chemotherapeutic agents augment TRAIL-induced apoptosis in human hepatocellular carcinoma cell lines. Hepatology 32:482

    CAS  PubMed  Google Scholar 

  61. Young JD (1989) Killing of target cells by lymphocytes: a mechanistic view. Physiol Rev 69:250

    CAS  PubMed  Google Scholar 

  62. Zamai L, Ahmad M, Bennett IM, Azzoni L, Alnemri ES, Perussia B (1998) NK-cell-mediated cytotoxicity: differential use of TRAIL and Fas ligand by immature and mature primary human NK cells. J Exp Med 188:2375

    Article  CAS  PubMed  Google Scholar 

  63. Zychlinsky A, Zheng LM, Liu CC, Young JD (1991) Cytolytic lymphocytes induce both apoptosis and necrosis in target cells. J Immunol 146:393

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements. We thank E.C. Shin and K.H. Han for their helpful discussions, and J.Y. Yoon and H.J. Ryu for their technical assistance. This work was supported by a grant of the Korea Health 21 R and D Project, Ministry of Health and Welfare, Republic of Korea (02-PJ1-PG10-20708–0006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jongsun Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, HR., Park, HJ., Park, J.H. et al. Characteristics of the killing mechanism of human natural killer cells against hepatocellular carcinoma cell lines HepG2 and Hep3B. Cancer Immunol Immunother 53, 461–470 (2004). https://doi.org/10.1007/s00262-003-0461-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-003-0461-0

Keywords

Navigation