Skip to main content
Log in

Cross sectional PET study of cerebral adenosine A1 receptors in premanifest and manifest Huntington’s disease

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

To study cerebral adenosine receptors (AR) in premanifest and manifest stages of Huntington’s disease (HD).

Methods

We quantified the cerebral binding potential (BP ND) of the A1AR in carriers of the HD CAG trinucleotide repeat expansion using the radioligand [18 F]CPFPX and PET. Four groups were investigated: (i) premanifest individuals far (preHD-A; n = 7) or (ii) near (preHD-B; n = 6) to the predicted symptom onset, (iii) manifest HD patients (n = 8), and (iv) controls (n = 36).

Results

Cerebral A1AR values of preHD-A subjects were generally higher than those of controls (by up to 31 %, p < .01, in the thalamus on average). Across stages a successive reduction of A1AR BPND was observed to the levels of controls in preHD-B and undercutting controls in manifest HD by down to 25 %, p < .01, in the caudatus and amygdala. There was a strong correlation between A1AR BP ND and years to onset. Before onset of HD, the assumed annual rates of change of A1AR density were −1.2 % in the caudatus, −1.7 % in the thalamus and −3.4 % in the amygdala, while the corresponding volume losses amounted to 0.6 %, 0.1 % and 0.2 %, respectively.

Conclusions

Adenosine receptors switch from supra to subnormal levels during phenoconversion of HD. This differential regulation may play a role in the pathophysiology of altered energy metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Langbehn DR, Hayden MR, Paulsen JS. CAG-repeat length and the age of onset in Huntington disease (HD): a review and validation study of statistical approaches. Am J Med Genet B Neuropsychiatr Genet. 2010;153B(2):397–408. doi:10.1002/ajmg.b.30992.

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Kunig G, Leenders KL, Sanchez-Pernaute R, Antonini A, Vontobel P, Verhagen A, et al. Benzodiazepine receptor binding in Huntington′s disease: [11C]flumazenil uptake measured using positron emission tomography. Ann Neurol. 2000;47(5):644–8.

    Article  CAS  PubMed  Google Scholar 

  3. Feigin A, Tang C, Ma Y, Mattis P, Zgaljardic D, Guttman M, et al. Thalamic metabolism and symptom onset in preclinical Huntington’s disease. Brain. 2007;130(Pt 11):2858–67. doi:10.1093/brain/awm217.

    Article  CAS  PubMed  Google Scholar 

  4. Ciarmiello A, Giovacchini G, Orobello S, Bruselli L, Elifani F, Squitieri F. 18 F-FDG PET uptake in the pre-Huntington disease caudate affects the time-to-onset independently of CAG expansion size. Eur J Nucl Med Mol Imaging. 2012;39(6):1030–6. doi:10.1007/s00259-012-2114-z.

    Article  CAS  PubMed  Google Scholar 

  5. Tai YF, Pavese N, Gerhard A, Tabrizi SJ, Barker RA, Brooks DJ, et al. Microglial activation in presymptomatic Huntington’s disease gene carriers. Brain. 2007;130(Pt 7):1759–66. doi:10.1093/brain/awm044.

    Article  PubMed  Google Scholar 

  6. Ginovart N, Lundin A, Farde L, Halldin C, Backman L, Swahn CG, et al. PET study of the pre- and post-synaptic dopaminergic markers for the neurodegenerative process in Huntington’s disease. Brain. 1997;120(Pt 3):503–14.

    Article  PubMed  Google Scholar 

  7. Andrews TC, Weeks RA, Turjanski N, Gunn RN, Watkins LH, Sahakian B, et al. Huntington’s disease progression. PET and clinical observations. Brain. 1999;122(Pt 12):2353–63.

    Article  PubMed  Google Scholar 

  8. Pavese N, Andrews TC, Brooks DJ, Ho AK, Rosser AE, Barker RA, et al. Progressive striatal and cortical dopamine receptor dysfunction in Huntington’s disease: a PET study. Brain. 2003;126(Pt 5):1127–35.

    Article  PubMed  Google Scholar 

  9. Martin WR, Hayden MR. Cerebral glucose and dopa metabolism in movement disorders. Can J Neurol Sci. 1987;14(3 Suppl):448–51.

    CAS  PubMed  Google Scholar 

  10. Bohnen NI, Koeppe RA, Meyer P, Ficaro E, Wernette K, Kilbourn MR, et al. Decreased striatal monoaminergic terminals in Huntington disease. Neurology. 2000;54(9):1753–9.

    Article  CAS  PubMed  Google Scholar 

  11. Bauer A, Holschbach MH, Meyer PT, Boy C, Herzog H, Olsson RA, et al. In vivo imaging of adenosine A1 receptors in the human brain with [18 F]CPFPX and positron emission tomography. Neuroimage. 2003;19(4):1760–9.

    Article  PubMed  Google Scholar 

  12. Holschbach MH, Olsson RA, Bier D, Wutz W, Sihver W, Schuller M, et al. Synthesis and evaluation of no-carrier-added 8-cyclopentyl-3-(3-[(18)F]fluoropropyl)-1-propylxanthine ([(18)F]CPFPX): a potent and selective A(1)-adenosine receptor antagonist for in vivo imaging. J Med Chem. 2002;45(23):5150–6.

    Article  CAS  PubMed  Google Scholar 

  13. Elmenhorst D, Meyer PT, Winz OH, Matusch A, Ermert J, Coenen HH, et al. Sleep deprivation increases A1 adenosine receptor binding in the human brain: a positron emission tomography study. J Neurosci. 2007;27(9):2410–5. doi:10.1523/JNEUROSCI.5066-06.2007.

    Article  CAS  PubMed  Google Scholar 

  14. Meyer PT, Elmenhorst D, Boy C, Winz O, Matusch A, Zilles K, et al. Effect of aging on cerebral A1 adenosine receptors: A [18 F]CPFPX PET study in humans. Neurobiol Aging. 2007;28(12):1914–24. doi:10.1016/j.neurobiolaging.2006.08.005.

    Article  CAS  PubMed  Google Scholar 

  15. Meyer PT, Elmenhorst D, Matusch A, Winz O, Zilles K, Bauer A. 18 F-CPFPX PET: on the generation of parametric images and the effect of scan duration. J Nucl Med. 2006;47(2):200–7.

    PubMed  Google Scholar 

  16. Fredholm BB. Adenosine, an endogenous distress signal, modulates tissue damage and repair. Cell Death Differ. 2007;14(7):1315–23. doi:10.1038/sj.cdd.4402132.

    Article  CAS  PubMed  Google Scholar 

  17. Blum D, Hourez R, Galas MC, Popoli P, Schiffmann SN. Adenosine receptors and Huntington’s disease: implications for pathogenesis and therapeutics. Lancet Neurol. 2003;2(6):366–74.

    Article  CAS  PubMed  Google Scholar 

  18. Gianfriddo M, Melani A, Turchi D, Giovannini MG, Pedata F. Adenosine and glutamate extracellular concentrations and mitogen-activated protein kinases in the striatum of Huntington transgenic mice. Selective antagonism of adenosine A2A receptors reduces transmitter outflow. Neurobiol Dis. 2004;17(1):77–88.

    Article  CAS  PubMed  Google Scholar 

  19. Damiano M, Galvan L, Deglon N, Brouillet E. Mitochondria in Huntington’s disease. Biochim Biophys Acta. 2010;1802(1):52–61. doi:10.1016/j.bbadis.2009.07.012.

    Article  CAS  PubMed  Google Scholar 

  20. Bauer A, Zilles K, Matusch A, Holzmann C, Riess O, von Horsten S. Regional and subtype selective changes of neurotransmitter receptor density in a rat transgenic for the Huntington’s disease mutation. J Neurochem. 2005;94(3):639–50. doi:10.1111/j.1471-4159.2005.03169.x.

    Article  CAS  PubMed  Google Scholar 

  21. Penney Jr JB, Vonsattel JP, MacDonald ME, Gusella JF, Myers RH. CAG repeat number governs the development rate of pathology in Huntington’s disease. Ann Neurol. 1997;41(5):689–92. doi:10.1002/ana.410410521.

    Article  PubMed  Google Scholar 

  22. HuntigtonStudyGroup. Unified Huntington’s Disease Rating Scale: reliability and consistency. Mov Disord. 1996;11(2):136–42. doi:10.1002/mds.870110204.

    Article  Google Scholar 

  23. Saft C, Andrich J, Meisel NM, Przuntek H, Muller T. Assessment of simple movements reflects impairment in Huntington’s disease. Mov Disord. 2006;21(8):1208–12. doi:10.1002/mds.20939.

    Article  PubMed  Google Scholar 

  24. Saft C, Schuttke A, Beste C, Andrich J, Heindel W, Pfleiderer B. fMRI reveals altered auditory processing in manifest and premanifest Huntington’s disease. Neuropsychologia. 2008;46(5):1279–89. doi:10.1016/j.neuropsychologia.2007.12.002.

    Article  PubMed  Google Scholar 

  25. Hurlemann R, Matusch A, Kuhn KU, Berning J, Elmenhorst D, Winz O, et al. 5-HT2A receptor density is decreased in the at-risk mental state. Psychopharmacology (Berl). 2008;195(4):579–90. doi:10.1007/s00213-007-0921-x.

    Article  CAS  PubMed  Google Scholar 

  26. van Oostrom JC, Maguire RP, Verschuuren-Bemelmans CC, van der Veenma Duin L, Pruim J, Roos RA, et al. Striatal dopamine D2 receptors, metabolism, and volume in preclinical Huntington disease. Neurology. 2005;65(6):941–3.

    Article  PubMed  Google Scholar 

  27. Tabrizi SJ, Reilmann R, Roos RA, Durr A, Leavitt B, Owen G, et al. Potential endpoints for clinical trials in premanifest and early Huntington’s disease in the TRACK-HD study: analysis of 24 month observational data. Lancet Neurol. 2012;11(1):42–53. doi:10.1016/S1474-4422(11)70263-0.

    Article  PubMed  Google Scholar 

  28. Kuhn A, Goldstein DR, Hodges A, Strand AD, Sengstag T, Kooperberg C, et al. Mutant huntingtin’s effects on striatal gene expression in mice recapitulate changes observed in human Huntington’s disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage. Hum Mol Genet. 2007;16(15):1845–61.

    Article  CAS  PubMed  Google Scholar 

  29. Ren H, Stiles GL. A single-stranded DNA binding site in the human A1 adenosine receptor gene promoter. Mol Pharmacol. 1998;53(1):43–51.

    CAS  PubMed  Google Scholar 

  30. Rivkees SA, Chen M, Kulkarni J, Browne J, Zhao Z. Characterization of the murine A1 adenosine receptor promoter, potent regulation by GATA-4 and Nkx2.5. J Biol Chem. 1999;274(20):14204–9.

    Article  CAS  PubMed  Google Scholar 

  31. Borovecki F, Lovrecic L, Zhou J, Jeong H, Then F, Rosas HD, et al. Genome-wide expression profiling of human blood reveals biomarkers for Huntington’s disease. Proc Natl Acad Sci U S A. 2005;102(31):11023–8. doi:10.1073/pnas.0504921102.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Eltzschig HK, Abdulla P, Hoffman E, Hamilton KE, Daniels D, Schonfeld C, et al. HIF-1-dependent repression of equilibrative nucleoside transporter (ENT) in hypoxia. J Exp Med. 2005;202(11):1493–505. doi:10.1084/jem.20050177.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Kennedy L, Shelbourne PF, Dewar D. Alterations in dopamine and benzodiazepine receptor binding precede overt neuronal pathology in mice modelling early Huntington disease pathogenesis. Brain Res. 2005;1039(1–2):14–21. doi:10.1016/j.brainres.2005.01.029.

    Article  CAS  PubMed  Google Scholar 

  34. Tarditi A, Camurri A, Varani K, Borea PA, Woodman B, Bates G, et al. Early and transient alteration of adenosine A2A receptor signaling in a mouse model of Huntington disease. Neurobiol Dis. 2006;23(1):44–53. doi:10.1016/j.nbd.2006.01.014.

    Article  CAS  PubMed  Google Scholar 

  35. Doolette DJ. Mechanism of adenosine accumulation in the hippocampal slice during energy deprivation. Neurochem Int. 1997;30(2):211–23.

    Article  CAS  PubMed  Google Scholar 

  36. Schindler M, Harris CA, Hayes B, Papotti M, Humphrey PP. Immunohistochemical localization of adenosine A1 receptors in human brain regions. Neurosci Lett. 2001;297(3):211–5.

    Article  CAS  PubMed  Google Scholar 

  37. Rivkees SA, Price SL, Zhou FC. Immunohistochemical detection of A1 adenosine receptors in rat brain with emphasis on localization in the hippocampal formation, cerebral cortex, cerebellum, and basal ganglia. Brain Res. 1995;677(2):193–203.

    Article  CAS  PubMed  Google Scholar 

  38. Johnston JB, Silva C, Gonzalez G, Holden J, Warren KG, Metz LM, et al. Diminished adenosine A1 receptor expression on macrophages in brain and blood of patients with multiple sclerosis. Ann Neurol. 2001;49(5):650–8.

    Article  CAS  PubMed  Google Scholar 

  39. Henley SM, Novak MJ, Frost C, King J, Tabrizi SJ, Warren JD. Emotion recognition in Huntington’s disease: a systematic review. Neurosci Biobehav Rev. 2012;36(1):237–53. doi:10.1016/j.neubiorev.2011.06.002.

    Article  PubMed  Google Scholar 

  40. Ille R, Holl AK, Kapfhammer HP, Reisinger K, Schafer A, Schienle A. Emotion recognition and experience in Huntington’s disease: is there a differential impairment? Psychiatry Res. 2011;188(3):377–82. doi:10.1016/j.psychres.2011.04.007.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Beste C, Saft C, Gunturkun O, Falkenstein M. Increased cognitive functioning in symptomatic Huntington’s disease as revealed by behavioral and event-related potential indices of auditory sensory memory and attention. J Neurosci. 2008;28(45):11695–702. doi:10.1523/JNEUROSCI.2659-08.2008.

    Article  CAS  PubMed  Google Scholar 

  42. Simonin C, Duru C, Salleron J, Hincker P, Charles P, Delval A, et al. Association between caffeine intake and age at onset in Huntington’s disease. Neurobiol Dis. 2013;58:179–82. doi:10.1016/j.nbd.2013.05.013.

    Article  CAS  PubMed  Google Scholar 

  43. Alfinito PD, Wang SP, Manzino L, Rijhsinghani S, Zeevalk GD, Sonsalla PK. Adenosinergic protection of dopaminergic and GABAergic neurons against mitochondrial inhibition through receptors located in the substantia nigra and striatum, respectively. J Neurosci. 2003;23(34):10982–7.

    CAS  PubMed  Google Scholar 

  44. Huang NK, Lin JH, Lin JT, Lin CI, Liu EM, Lin CJ, et al. A new drug design targeting the adenosinergic system for Huntington’s disease. PLoS One. 2011;6(6):e20934. doi:10.1371/journal.pone.0020934.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Langbehn DR, Brinkman RR, Falush D, Paulsen JS, Hayden MR. A new model for prediction of the age of onset and penetrance for Huntington’s disease based on CAG length. Clin Genet. 2004;65(4):267–77. doi:10.1111/j.1399-0004.2004.

    Article  CAS  PubMed  Google Scholar 

  46. Saft C, Andrich J, Meisel NM, Przuntek H, Müller T. Assessment of complex movements reflects dysfunction in Huntington's disease. J Neurol. 2003;250(12):1469–74. doi:10.1007/s00415-003-0256-4.

    Google Scholar 

Download references

Acknowledgements

We thank all patients and their families for their kind support. The authors gratefully acknowledge the fruitful discussions with J. Ermert, M. Holschbach, D. Bier and K. Hamacher as well as the excellent technical assistance of S. Grafmuller, M. Lang, B. Palm, S. Rehbein, E. Wabbals (Institute of Nuclear Chemistry), M. Vögeling (Molecular Neuroimaging Group), S. Schaden, L. Tellmann, E. Theelen, C. Frey (PET Instrumentation Group), B. Elghahwagi, P. Engels, G. Oefler, J. N. Shah (MRI Instrumentation Group, Research Center Juelich).

Sponsorship and funding

Expenses for the entire study and personal budget for A.M., D.E. and A.B.. were financed by Forschungszentrum Jülich. C.S. was supported by the Ruhr-University Bochum (FoRUM grant K040/09).

Author’s financial disclosures

For all authors, there was no sponsorship or funding related to the present study.

A. M., D.E. and A.B.. received no industrial funding.

R. G. has received payments for consultancy from Biogen and Teva. He has also received speaker honoraria and research grants from Biogen Idec Germany, Teva, Sanofi-Aventis, Novartis, Bayer Healthcare, and MerckSerono.

H. P. Hartung has received personal compensation for activities with Biogen Idec, Teva, Sanofi Aventis, Novartis Pharma, Merck Serono, and Bayer Schering.

P. H. K. received funding from Boehringer Ingelheim Pharma and TEVA.

C. S. received honorarium from Temmler Pharma GmbH & Co.KG for scientific talks, compensation in the context of the Registry-Study of the Euro-HD-Network, in the context of the ACR16-Study (Neurosearch), the AFQ-Study (Novartis), the Selisistat-Studies (Siena Biotech) and received research support for a research project with Teva Pharma GmbH and the Cure Huntington’s Disease Initiative (CHDI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Matusch.

Additional information

Individual contributions of the authors

Andreas Matusch: data analysis, statistics, interpretation, drafting and revising of the MS

Carsten Saft: conceptualization of the study, interpretation, drafting and revising of the MS

David Elmenhorst: data analysis, revising of the MS

Peter H. Kraus: revising the MS

Ralf Gold: revising the MS

Hans-Peter Hartung: revising the MS

Andreas Bauer: conceptualization of the study, interpretation of the data, revising the MS

Matusch and Saft are authors that contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matusch, A., Saft, C., Elmenhorst, D. et al. Cross sectional PET study of cerebral adenosine A1 receptors in premanifest and manifest Huntington’s disease. Eur J Nucl Med Mol Imaging 41, 1210–1220 (2014). https://doi.org/10.1007/s00259-014-2724-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-014-2724-8

Keywords

Navigation