Date: 16 Feb 2010

Targeted alpha-radionuclide therapy of functionally critically located gliomas with 213 Bi-DOTA-[Thi8 ,Met(O2 )11 ]-substance P: a pilot trial

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access



Functionally critically located gliomas represent a challenging subgroup of intrinsic brain neoplasms. Standard therapeutic recommendations often cannot be applied, because radical treatment and preservation of neurological function are contrary goals. The successful targeting of gliomas with locally injected beta radiation-emitting 90Y-DOTAGA-substance P has been shown previously. However, in critically located tumours, the mean tissue range of 5 mm of 90Y may seriously damage adjacent brain areas. In contrast, the alpha radiation-emitting radionuclide 213Bi with a mean tissue range of 81 µm may have a more favourable toxicity profile. Therefore, we evaluated locally injected 213Bi-DOTA-substance P in patients with critically located gliomas as the primary therapeutic modality.


In a pilot study, we included five patients with critically located gliomas (WHO grades II–IV). After diagnosis by biopsy, 213Bi-DOTA-substance P was locally injected, followed by serial SPECT/CT and MR imaging and blood sampling. Besides feasibility and toxicity, the functional outcome was evaluated.


Targeted radiopeptide therapy using 213Bi-DOTA-substance P was feasible and tolerated without additional neurological deficit. No local or systemic toxicity was observed. 213Bi-DOTA-substance P showed high retention at the target site. MR imaging was suggestive of radiation-induced necrosis and demarcation of the tumours, which was validated by subsequent resection.


This study provides proof of concept that targeted local radiotherapy using 213Bi-DOTA-substance P is feasible and may represent an innovative and effective treatment for critically located gliomas. Primarily non-operable gliomas may become resectable with this treatment, thereby possibly improving the prognosis.