Date: 28 Oct 2009

Clinical value of 18F-fluorodihydroxyphenylalanine positron emission tomography/computed tomography (18F-DOPA PET/CT) for detecting pheochromocytoma

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Purpose

In detecting pheochromocytoma (PHEO), positron emission tomography (PET) with the radiolabelled amine precursor 18F-fluorodihydroxyphenylalanine (18F-DOPA) offers excellent specificity, while computed tomography (CT) provides high sensitivity and ability to localize lesions; therefore, the combination of these modalities could be advantageous in this setting. The aim of this study was to investigate whether combined 18F-DOPA PET/CT more accurately detects and localizes PHEO lesions than does each modality alone.

Methods

18F-DOPA PET, CT and 18F-DOPA PET/CT images of 25 consecutive patients undergoing diagnostic scanning of suspected sporadic or multiple endocrine neoplasia type 2 syndrome-associated PHEO were reviewed retrospectively in randomized sequence. Two blinded observers scored the images regarding the likelihood of PHEO being present and localizable. Results were correlated with subsequent clinical history and, when available, histology.

Results

Of the 19 lesions detected by all three modalities, PET identified each as positive for PHEO, but was unable to definitively localize 15 of 19 (79%). CT could definitively localize all 19 lesions, but could not definitively diagnose or exclude PHEO in 18 of 19 (95%) lesions. Furthermore, CT falsely identified as negative for PHEO one lesion which was judged to be positive for this tumor by both PET and PET/CT. Only in PET/CT scans were all 19 lesions accurately characterized and localized. On a per-patient basis, the sensitivity of 18F-DOPA PET/CT for PHEO was 100% and the specificity 88%, with a 100% positive predictive value and an 88% negative predictive value.

Conclusion

18F-DOPA PET/CT more accurately diagnoses and localizes adrenal and extra-adrenal masses suspicious for PHEO than do 18F-DOPA PET or CT alone.

Markus Luster and Wolfram Karges contributed equally