Skip to main content
Log in

Optimization of Lactobacillus acidophilus cultivation using taro waste and evaluation of its biological activity

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, taro waste (TW) was utilized for Lactobacillus acidophilus BCRC 14079 cultivation and the anti-tumor and immune-modulatory properties of heat-killed cells (HKCs), cytoplasmic fraction (CF), and exopolysaccharide (EPS) were evaluated. The optimum liquefaction enzyme dosage, temperature, and time determined by Box-Behnken design response surface methodology (BBD-RSM) were 9 mL/L of α-amylase, 79.2 °C, and 5 h of reaction, respectively. The optimum temperature and reaction time for saccharification were determined as 60 °C and 3 h. The optimum medium, CGMY1 medium, constitutes of TW hydrolysate containing 37 g/L of glucose, 25 g/L of corn gluten meal (CGM), and 1 g/L of yeast extract (YE). Results of MTT assay showed that HKCs and EPS from CGM medium exhibited the highest anti-proliferative in HT-29 (IC50 of HKCs, 467.25 μg/mL; EPS, 716.10 μg/mL) and in Caco-2 cells (IC50 of EPS, 741.60 μg/mL). Luciferase-based NF-ΚB and COX-2 systems indicated HKCs from CGM medium stimulated the highest expression of luciferin in both systems. The luciferase activities by using 100 and 500 μg/mL of HKCs from CGM were 24.30- and 45.83-fold in NF-ΚB system and 11.54- and 4.93-fold in COX-2 system higher than the control. In conclusion, this study demonstrated the potential of TW medium for L. acidophilus cultivation and the production of non-viable probiotics with enhanced biological activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amrane A, Prigent Y (1998) Influence of yeast extract concentration on batch cultures of Lactobacillus helveticus: growth and production coupling. World J Microb Biotechnol 14:529–534

    Article  CAS  Google Scholar 

  • Bleau C, Monges A, Rashidan K, Laverdure JP, Lacroix M, Van Calsteren MR, Millette M, Savard R, Lamontagne L (2010) Intermediate chains of exopolysaccharides from Lactobacillus rhamnosus RW‐9595M increase IL‐10 production by macrophages. J Appl Microbiol 108(2):666–675

    Article  CAS  PubMed  Google Scholar 

  • Box GEP, Behnken DW (1960) Some new three level designs for the study of quantitative variables. Technometrics 2(4):455–475

    Article  Google Scholar 

  • Chabot S, Yu HL, De Léséleuc L, Cloutier D, Van Calsteren MR, Lessard M, Roy D, Lacroix M, Oth D (2001) Exopolysaccharides from Lactobacillus rhamnosus RW-9595M stimulate TNF, IL-6 and IL-12 in human and mouse cultured immunocompetent cells, and IFN-γ in mouse splenocytes. Lait 81(6):683–697

    Article  CAS  Google Scholar 

  • Cheng P, Mueller R, Jaeger S, Bajpai R, Iannotti E (1991) Lactic acid production from enzyme-thinned corn starch using Lactobacillus amylovorus. J Ind Microbol 7(1):27–34

    Article  CAS  Google Scholar 

  • Choi S, Kim Y, Han K, You S, Oh S, Kim S (2006) Effects of Lactobacillus strains on cancer cell proliferation and oxidative stress in vitro. Lett Appl Microbol 42(5):452–458

    Article  CAS  Google Scholar 

  • Ciszek-Lenda M (2011) Biological functions of exopolysaccharides from probiotic bacteria. Centr Eur J Immunol 36:51–55

    CAS  Google Scholar 

  • Delgado R, Castro A, Vázquez M (2009) A kinetic assessment of the enzymatic hydrolysis of potato Solanum tuberosum. LWT-Food Sci Technol 42(4):797–804

    Article  CAS  Google Scholar 

  • Ditu LM, Chifiriuc MC, Bezirtzoglou E, Marutescu L, Bleotu C, Pelinescu D, Mihaescu G, Lazar V (2014) Immunomodulatory effect of non-viable components of probiotic culture stimulated with heat-inactivated Escherichia coli and Bacillus cereus on holoxenic mice. Microb Ecol Health Dis 25:23239

    Google Scholar 

  • Erickson KL, Hubbard NE (2000) Probiotic immunomodulation in health and disease. J Nutr 130(2):403S–409S

    CAS  PubMed  Google Scholar 

  • Feedipedia. 2014. http://www.feedpedia.org. (accessed 24 June 2014)

  • Fichera GA, Giese G (1994) Non-immunologically-mediated cytotoxicity of Lactobacillus casei and its derivative peptidoglycan against tumor cell lines. Cancer Lett 85(1):93–103

    Article  CAS  PubMed  Google Scholar 

  • Fraga I, Coutinho J, Bezerra RM, Dias AA, Marques G (2014) Influence of culture medium growth variables on Ganoderma lucidum exopolysaccharides structural features. Carbohydr Polym 111:936–946

    Article  CAS  PubMed  Google Scholar 

  • Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59(2):257–268

    Article  CAS  Google Scholar 

  • Grimoud J, Durand H, De Souza S, Monsan P, Ouarné F, Theodorou V, Roques C (2010) In vitro screening of probiotics and synbiotics according to anti-inflammatory and anti-proliferative effects. Int J Food Microbiol 144(1):42–50

    Article  CAS  PubMed  Google Scholar 

  • Heenan C, Adams M, Hosken R, Fleet G (2002) Growth medium for culturing probiotic bacteria for applications in vegetarian food products. LWT-Food Sci Technol 35(2):171–176

    Article  CAS  Google Scholar 

  • Hsieh WJ, Chiou ST, Pan MH, Hsieh SC (2012) Establishment and evaluation of biotechnological platform for screening health food with anti-inflammation ability. J Tradit Complement Med 2:76–80

    PubMed Central  PubMed  Google Scholar 

  • Hwang CF, Chen JN, Huang YT, Mao ZY (2011) Biomass production of Lactobacillus plantarum LP02 isolated from infant feces with potential cholesterol-lowering ability. Afri J Biotechnol 10(36):7010–7020

    CAS  Google Scholar 

  • Jaiswal N, Prakash O, Talat M, Hasan S, Pandey RK (2011) Application of response surface methodology for the determination of optimum reaction conditions (temperature and pH) for starch hydrolysis by α-amylase. Asian J Biochem 6(4):357–365

    Article  CAS  Google Scholar 

  • Jiang Y, Lü X, Man C, Han L, Shan Y, Qu X, Liu Y, Yang S, Xue Y, Zhang Y (2012) Lactobacillus acidophilus induces cytokine and chemokine production via NF-κB and p38 mitogen-activated protein kinase signaling pathways in intestinal epithelial cells. Clin Vacc Immunol 19(4):603–608

    Article  Google Scholar 

  • Joint FAO (2002) WHO Working Group report on drafting guidelines for the evaluation of probiotics in food. London, Ontario, Canada., p 30

    Google Scholar 

  • Kato I, Tanaka K, Yokokura T (1999) Lactic acid bacterium potently induces the production of interleukin-12 and interferon-γ by mouse splenocytes. Int J Immunopharmacol 21(2):121–131

    Article  CAS  PubMed  Google Scholar 

  • Kitazawa H, Harata T, Uemura J, Saito T, Kaneko T, Itoh T (1998) Phosphate group requirement for mitogenic activation of lymphocytes by an extracellular phosphopolysaccharide from Lactobacillus delbrueckii ssp. bulgaricus. Int J Food Microbiol 40(3):169–175

    Article  CAS  PubMed  Google Scholar 

  • Kopp EB, Medzhitov R (1999) The toll-receptor family and control of innate immunity. Curr Opin Immunol 11(1):13–18

    Article  CAS  PubMed  Google Scholar 

  • Kreike CM, Van Eck HJ, Lebot V (2004) Genetic diversity of taro, Colocasia esculenta (L.) Schott, in Southeast Asia and the Pacific. Theor Appl Genet 109(4):761–768

    Article  CAS  PubMed  Google Scholar 

  • Lahtinen S, Ouwehand AC, Salminen S, von Wright A (2011) Lactic acid bacteria: microbiological and functional aspects. CRC Press, Boca Raton

    Google Scholar 

  • Lee JW, Kim EH, Yim IB, Joo HG (2004) Immunomodulatory and antitumor effects in vivo by the cytoplasmic fraction of Lactobacillus casei and Bifidobacterium longum. J Vet Sci 5(1):41–48

    PubMed  Google Scholar 

  • Liu CF, Pan TM (2010) In vitro effects of lactic acid bacteria on cancer cell viability and antioxidant activity. J Food Drug Anal 18(2):77–86

    Google Scholar 

  • Liu CT, Chu FJ, Chou CC, Yu RC (2011) Antiproliferative and anticytotoxic effects of cell fractions and exopolysaccharides from Lactobacillus casei 01. Mutat Res Gen Tox En 721(2):157–162

    Article  CAS  Google Scholar 

  • Mack DR, Lebel S (2004) Role of probiotics in the modulation of intestinal infections and inflammation. Curr Opin Gastroen 20(1):22–26

    Article  Google Scholar 

  • Oda M, Hasegawa H, Komatsu S, Kambe M, Tsuchiya F (1983) Anti-tumor polysaccharide from Lactobacillus sp. Agric Biol Chem 47(7):1623–1625

    Article  CAS  Google Scholar 

  • Ogunbanwo S, Sanni A, Onilude A (2003) Influence of cultural conditions on the production of bacteriocin by Lactobacillus brevis OG1. Afri J Biotechnol 2(7):179–184

    Article  CAS  Google Scholar 

  • Oleskowicz-Popiel P, Kádár Z, Heiske S, Klein-Marcuschamer D, Simmons BA, Blanch HW, Schmidt JE (2012) Co-production of ethanol, biogas, protein fodder and natural fertilizer in organic farming—evaluation of a concept for a farm-scale biorefinery. Bioresour Technol 104:440–446

    Article  CAS  PubMed  Google Scholar 

  • Onwueme I (1999) Taro cultivation in Asia and the Pacific. Rap Publication 16:1–9

    Google Scholar 

  • Patel S, Majumder A, Goyal A (2012) Potentials of expolysaccharides from lactic acid bacteria. Indian J Microbiol 52(1):3–12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rhee SJ, Lee JE, Lee CH (2011) Importance of lactic acid bacteria in Asian fermented foods. Microb Cell Fact 10(Suppl 1):S5

    Article  PubMed Central  PubMed  Google Scholar 

  • Ruiz MI, Sanchez CI, Torrres RG, Molina DR (2011) Enzymatic hydrolysis of cassava starch for production of bioethanol with a Colombian wild yeast strain. J Braz Chem Soc 22(12):2337–2343

    Article  CAS  Google Scholar 

  • Shi YH, Le GW, Sun J, Ma XY (2005) Distinct immune response induced by peptidoglycan derived from Lactobacillus sp. World J Gastroenterol 11(40):6330–6337

    Article  PubMed Central  PubMed  Google Scholar 

  • Smai Co L (2014) Shan Mai taro cake. In: The legend of purple rose, vol. 2014

    Google Scholar 

  • Taillandier P, Gilis F, Portugal FR, Laforce P, Strehaiano P (1996) Influence of medium composition, pH and temperature on the growth and viability of Lactobacillus acidophilus. Biotechnol Lett 18(7):775–780

    Article  CAS  Google Scholar 

  • Tejada-Simon MV, Pestka JJ (1999) Proinflammatory cytokine and nitric oxide induction in murine macrophages by cell wall and cytoplasmic extracts of lactic acid bacteria. J Food Protection 62(12):1435–1444

    CAS  Google Scholar 

  • Tsai YT, Cheng PC, Pan TM (2012) The immunomodulatory effects of lactic acid bacteria for improving immune functions and benefits. Appl Microbiol Biotechnol 96(4):853–862

    Article  CAS  PubMed  Google Scholar 

  • Zong L, Zhang CF, Covasa MH (2014) Emerging roles of lactic acid bacteria in protection against colorectal cancer. World J Gastroenterol 20(24):7878–7886

    Article  Google Scholar 

Download references

Acknowledgments

This article was financially supported by the Ministry of Science and Technology, Taiwan, ROC (MOST 104-2221-E-002-125-MY3). The authors would like to thank Tien-Ni Tammy Tseng (who is a native speaker) from the Department of Agricultural Chemistry, National Taiwan University for the English editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuan-Chen Cheng.

Ethics declarations

Ethical statement

This study was funded by the Ministry of Science and Technology, Taiwan, ROC (MOST 104-2221-E-002-125-MY3). Shu-Chen Hsieh, Jui-Ming Liu, Xiao-Hui Pua, Yuwen Ting, Ren-Jun Hsu, and Kuan-Chen Cheng declare that he/she has no conflict of interest. This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Shu-Chen Hsieh and Jui-Ming Liu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsieh, SC., Liu, JM., Pua, XH. et al. Optimization of Lactobacillus acidophilus cultivation using taro waste and evaluation of its biological activity. Appl Microbiol Biotechnol 100, 2629–2639 (2016). https://doi.org/10.1007/s00253-015-7149-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-7149-1

Keywords

Navigation