Skip to main content
Log in

Biogas desulfurization using autotrophic denitrification process

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the performance of an autotrophic denitrification process for desulfurization of biogas produced from a chicken manure digester. A laboratory scale upflow fixed bed reactor (UFBR) was operated for 105 days and fed with sodium sulfide or H2S scrubbed from the biogas and nitrate as electron donor and acceptor, respectively. The S/N ratio (2.5 mol/mol) of the feed solution was kept constant throughout the study. When the UFBR was fed with sodium sulfide solution with an influent pH of 7.7, about 95 % sulfide and 90 % nitrate removal efficiencies were achieved. However, the inlet of the UFBR was clogged several times due to the accumulation of biologically produced elemental sulfur particles and the clogging resulted in operational problems. When the UFBR was fed with the H2S absorbed from the biogas and operated with an influent pH of 8–9, around 98 % sulfide and 97 % nitrate removal efficiencies were obtained. In this way, above 95 % of the H2S in the biogas was removed as elemental sulfur and the reactor effluent was reused as scrubbing liquid without any clogging problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • APHA (2005) Standard methods for the examination of water and wastewater. APHA-AWWA-WEF, Washington, D.C.

    Google Scholar 

  • Baciocchi R, Carnevale E, Corti A, Costa G, Lombardi L, Olivieri T, Zanchi L, Zingaretti D (2013) Innovative process for biogas upgrading with CO2 storage: results from pilot plant operation. Biomass Bioenergy 53(0):128–137. doi:10.1016/j.biombioe.2012.11.016

    Article  CAS  Google Scholar 

  • Baspinar AB, Turker M, Hocalar A, Ozturk I (2011) Biogas desulphurization at technical scale by lithotrophic denitrification: integration of sulphide and nitrogen removal. Process Biochem 46(4):916–922. doi:10.1016/j.procbio.2011.01.001

    Article  CAS  Google Scholar 

  • Bosch PLF, Beusekom OC, Buisman CJN, Janssen AJH (2007) Sulfide oxidation at halo-alkaline conditions in a fed-batch bioreactor. Biotechnol Bioeng 97(5):1053–1063

    Article  PubMed  CAS  Google Scholar 

  • Cai J, Zheng P, Mahmood Q (2008) Effect of sulfide to nitrate ratios on the simultaneous anaerobic sulfide and nitrate removal. Bioresour Technol 99(13):5520–5527. doi:10.1016/j.biortech.2007.10.053

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Huang J, Yang C-L (2001) Absorption of H2S in NaOCl caustic aqueous solution. Environ Prog 20(3):175–181. doi:10.1002/ep.670200313

    Article  CAS  Google Scholar 

  • Chen Y, Fan Z, Ma L, Yin J, Luo M, Cai W (2014) Performance of three pilot-scale immobilized-cell biotrickling filters for removal of hydrogen sulfide from a contaminated air steam. Saudi J Biol Sci (0) doi:10.1016/j.sjbs.2014.05.008

  • Cirne DG, Van Der Zee FP, Fernandez-Polanco M, Fernandez-Polanco F (2008) Control of sulphide during anaerobic treatment of S-containing wastewaters by adding limited amounts of oxygen or nitrate. Rev Environ Sci Biotechnology 7(2):93–105

    Article  CAS  Google Scholar 

  • Cord-Ruwisch R (1985) A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 4(1):33–36. doi:10.1016/0167-7012(85)90005-3

    Article  CAS  Google Scholar 

  • Deublein D, Steinhauser A (2011) Biogas from waste and renewable resources: an introduction. John Wiley & Sons

  • Díaz I, Lopes AC, Pérez SI, Fdz-Polanco M (2010) Performance evaluation of oxygen, air and nitrate for the microaerobic removal of hydrogen sulphide in biogas from sludge digestion. Bioresour Technol 101(20):7724–7730. doi:10.1016/j.biortech.2010.04.062

    Article  PubMed  CAS  Google Scholar 

  • Dinamarca C (2014) Anaerobic expanded granular sludge bed (EGSB) reactor for the removal of sulphide by autotrophic denitrification. Journal Homepage: www IJEE IEEFoundation org 5(1):111–118

    CAS  Google Scholar 

  • Dolejs P, Paclík L, Maca J, Pokorna D, Zabranska J, Bartacek J (2014) Effect of S/N ratio on sulfide removal by autotrophic denitrification. Appl Microbiol Biotechnol: 1-10

  • Fernández-Rodríguez J, Pérez M, Romero L (2015) Temperature-phased anaerobic digestion of industrial organic fraction of municipal solid waste: a batch study. Chem Eng J 270:597–604

    Article  CAS  Google Scholar 

  • Fernández M, Ramírez M, Gómez JM, Cantero D (2014) Biogas biodesulfurization in an anoxic biotrickling filter packed with open-pore polyurethane foam. J Hazard Mater 264(0):529–535. doi:10.1016/j.jhazmat.2013.10.046

    Article  PubMed  CAS  Google Scholar 

  • Fernández N, Sierra-Alvarez R, Field JA, Amils R, Sanz JL (2008) Microbial community dynamics in a chemolithotrophic denitrification reactor inoculated with methanogenic granular sludge. Chemosphere 70(3):462–474. doi:10.1016/j.chemosphere.2007.06.062

    Article  PubMed  CAS  Google Scholar 

  • Findlay AJ, Gartman A, MacDonald DJ, Hanson TE, Shaw TJ, Luther GW (2014) Distribution and size fractionation of elemental sulfur in aqueous environments: the Chesapeake Bay and Mid-Atlantic Ridge. Geochim Cosmochim Acta (0) doi:10.1016/j.gca.2014.07.032

  • Fonoll X, Astals S, Dosta J, Mata-Alvarez J (2015) Anaerobic co-digestion of sewage sludge and fruit wastes: evaluation of the transitory states when the co-substrate is changed. Chem Eng J 262:1268–1274

    Article  CAS  Google Scholar 

  • Fortuny M, Baeza JA, Gamisans X, Casas C, Lafuente J, Deshusses MA, Gabriel D (2008) Biological sweetening of energy gases mimics in biotrickling filters. Chemosphere 71(1):10–17. doi:10.1016/j.chemosphere.2007.10.072

    Article  PubMed  CAS  Google Scholar 

  • Guerrero RB, Bevilaqua D (2015) Biotrickling filtration of biogas produced from the wastewater treatment plant of a brewery. J Environ Eng

  • Kleinjan WE, de Keizer A, Janssen AJH (2005) Kinetics of the reaction between dissolved sodium sulfide and biologically produced sulfur. Ind Eng Chem Res 44(2):309–317. doi:10.1021/ie049579q

    Article  CAS  Google Scholar 

  • Ko JH, Xu Q, Jang Y-C (2015) Emissions and control of hydrogen sulfide at landfills: a review. Critical Reviews in Environmental Science and Technology (just-accepted):00–00

  • Krischan J, Makaruk A, Harasek M (2012) Design and scale-up of an oxidative scrubbing process for the selective removal of hydrogen sulfide from biogas. J Hazard Mater 215–216(0):49–56. doi:10.1016/j.jhazmat.2012.02.028

    Article  PubMed  CAS  Google Scholar 

  • Lee K-C, Rittmann BE (2003) Effects of pH and precipitation on autohydrogenotrophic denitrification using the hollow-fiber membrane-biofilm reactor. Water Res 37(7):1551–1556. doi:10.1016/S0043-1354(02)00519-5

    Article  PubMed  CAS  Google Scholar 

  • López ME, Rene ER, Veiga MC, Kennes C (2012) Biogas technologies and cleaning techniques environmental chemistry for a sustainable world. Springer, pp 347-377

  • Mahmood Q, Zheng P, Hayat Y, Islam E, Wu D, Ren-cun J (2008) Effect of pH on anoxic sulfide oxidizing reactor performance. Bioresour Technol 99(8):3291–3296. doi:10.1016/j.biortech.2007.07.006

    Article  PubMed  CAS  Google Scholar 

  • Montebello AM, Fernández M, Almenglo F, Ramírez M, Cantero D, Baeza M, Gabriel D (2012) Simultaneous methylmercaptan and hydrogen sulfide removal in the desulfurization of biogas in aerobic and anoxic biotrickling filters. Chem Eng J 200–202(0):237–246. doi:10.1016/j.cej.2012.06.043

    Article  CAS  Google Scholar 

  • Moraes BS, Souza TSO, Foresti E (2012) Effect of sulfide concentration on autotrophic denitrification from nitrate and nitrite in vertical fixed-bed reactors. Process Biochem 47(9):1395–1401. doi:10.1016/j.procbio.2012.05.008

    Article  CAS  Google Scholar 

  • Nowicki P, Skibiszewska P, Pietrzak R (2014) Hydrogen sulphide removal on carbonaceous adsorbents prepared from coffee industry waste materials. Chem Eng J 248(0):208–215. doi:10.1016/j.cej.2014.03.052

    Article  CAS  Google Scholar 

  • Oh S, Kim K, Choi H, Cho J, Kim I (2000) Kinetics and physiological characteristics of autotrophic dentrification by denitrifying sulfur bacteria. Water Sci Technol 42(3–4):59–68

    CAS  Google Scholar 

  • Petersson A, WeLLInGer A (2009) Biogas upgrading technologies—developments and innovations. IEA Bioenergy 20

  • Potivichayanon S, Pokethitiyook P, Kruatrachue M (2006) Hydrogen sulfide removal by a novel fixed-film bioscrubber system. Process Biochem 41(3):708–715. doi:10.1016/j.procbio.2005.09.006

    Article  CAS  Google Scholar 

  • Ramos I, Fdz-Polanco M (2014) Microaerobic control of biogas sulphide content during sewage sludge digestion by using biogas production and hydrogen sulphide concentration. Chem Eng J 250(0):303–311. doi:10.1016/j.cej.2014.04.027

    Article  CAS  Google Scholar 

  • Rodriguez G, Dorado AD, Fortuny M, Gabriel D, Gamisans X (2014) Biotrickling filters for biogas sweetening: oxygen transfer improvement for a reliable operation. Process Saf Environ Prot 92(3):261–268. doi:10.1016/j.psep.2013.02.002

    Article  CAS  Google Scholar 

  • Sahinkaya E, Hasar H, Kaksonen AH, Rittmann BE (2011) Performance of a sulfide-oxidizing, sulfur-producing membrane biofilm reactor treating sulfide-containing bioreactor effluent. Environ Sci Technol 45(9):4080–4087. doi:10.1021/es200140c

    Article  PubMed  CAS  Google Scholar 

  • Sahinkaya E, Kilic A, Duygulu B (2014) Pilot and full scale applications of sulfur-based autotrophic denitrification process for nitrate removal from activated sludge process effluent. Water Res 60(0):210–217. doi:10.1016/j.watres.2014.04.052

    Article  PubMed  CAS  Google Scholar 

  • Sahinkaya E, Yurtsever A, Aktaş Ö, Ucar D, Wang Z (2015) Sulfur-based autotrophic denitrification of drinking water using a membrane bioreactor. Chem Eng J 268(0):180–186. doi:10.1016/j.cej.2015.01.045

    Article  CAS  Google Scholar 

  • Shang G, Shen G, Liu L, Chen Q, Xu Z (2013) Kinetics and mechanisms of hydrogen sulfide adsorption by biochars. Bioresour Technol 133(0):495–499. doi:10.1016/j.biortech.2013.01.114

    Article  PubMed  CAS  Google Scholar 

  • Syed M, Soreanu G, Falletta P, Béland M (2006) Removal of hydrogen sulfide from gas streams using biological processes—a review. Can Biosyst Eng 48:2

    Google Scholar 

  • Tafdrup S (1995) Viable energy production and waste recycling from anaerobic digestion of manure and other biomass materials. Biomass Bioenergy 9(1):303–314

    Article  CAS  Google Scholar 

  • Tang K, Baskaran V, Nemati M (2009) Bacteria of the sulphur cycle: an overview of microbiology, biokinetics and their role in petroleum and mining industries. Biochem Eng J 44(1):73–94

    Article  CAS  Google Scholar 

  • Üresin E, Saraç Hİ, Sarıoğlan A, Ay Ş, Akgün F (2014) An experimental study for H2S and CO2 removal via caustic scrubbing system. Process Safety and Environmental Protection (0) doi:10.1016/j.psep.2014.06.013

  • Yücel M, Konovalov SK, Moore TS, Janzen CP, Luther Iii GW (2010) Sulfur speciation in the upper black sea sediments. Chem Geol 269(3–4):364–375. doi:10.1016/j.chemgeo.2009.10.010

    Article  CAS  Google Scholar 

  • Zhang TC, Lampe DG (1999) Sulfur:limestone autotrophic denitrification processes for treatment of nitrate-contaminated water: batch experiments. Water Res 33(3):599–608. doi:10.1016/S0043-1354(98)00281-4

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Marmara University Scientific Research Committee BAPKO (Project No. FEN-A-100713-0323).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alper Bayrakdar.

Ethics declarations

Funding

This study was funded by Marmara University Scientific Research Committee BAPKO (Project No. FEN-A-100713-0323).

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayrakdar, A., Tilahun, E. & Calli, B. Biogas desulfurization using autotrophic denitrification process. Appl Microbiol Biotechnol 100, 939–948 (2016). https://doi.org/10.1007/s00253-015-7017-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-7017-z

Keywords

Navigation