Skip to main content

Advertisement

Log in

Molecular methods for studying methanogens of the human gastrointestinal tract: current status and future directions

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Until recently, human gut microbiota was believed to be colonized by few methanogenic archaeal species. Much higher microbial diversity within the human gut was revealed by the use of molecular approaches as compared to routine microbiological techniques, but still, a lot remains unknown. Molecular techniques has the advantage of being rapid, reproducible, and can be highly discriminative as compared to conventional culturing methods. Some of them provide both qualitative and quantitative information. However, the choice of method should be taken with care to avoid biases. The advent of next-generation sequencing gives much deeper information from which functional and ecological hypotheses can be drawn. In this review, molecular techniques that are currently used together with their possible future developments to study gut methanogenic communities are indicated along with their limitations and difficulties that are encountered during their implementation. Moreover, the high amount of metagenomics data from the human gut microbiome indicate that this environment could be a paradigm for new directions in methanogen diversity studies and help to develop new approaches for other environments as well. Concerning humans, this should help us to better understand the possible association of methanogens with some of the diseased conditions and their peculiar distribution among age groups in human.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abell GC, Conlon MA, McOrist AL (2006) Methanogenic archaea in adult human faecal samples are inversely related to butyrate concentration. Microb Ecol Health Dis 18(3-4):154–160

    CAS  Google Scholar 

  • Ambrogelly A, Palioura S, Söll D (2007) Natural expansion of the genetic code. Nat Chem Biol 3(1):29–35

    CAS  PubMed  Google Scholar 

  • Armougom F, Henry M, Vialettes B, Raccah D, Raoult D (2009) Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and methanogens in anorexic patients. PLoS One 4(9), e7125

    PubMed Central  PubMed  Google Scholar 

  • Bang C, Weidenbach K, Gutsmann T, Heine H, Schmitz RA (2014) The intestinal archaea Methanosphaera stadtmanae and Methanobrevibacter smithii activate human dendritic cells. PLoS One 9(6), e99411

    PubMed Central  PubMed  Google Scholar 

  • Bapteste É, Brochier C, Boucher Y (2005) Higher-level classification of the Archaea: evolution of methanogenesis and methanogens. Archaea 1(5):353–363

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barlaan EA, Sugimori M, Furukawa S, Takeuchi K (2005) Profiling and monitoring of microbial populations by denaturing high-performance liquid chromatography. J Microbiol Methods 61(3):399–412

    CAS  PubMed  Google Scholar 

  • Blainey PC, Quake SR (2014) Dissecting genomic diversity, one cell at a time. Nat Methods 11(1):19–21

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blais Lecours P, Marsolais D, Cormier Y, Berberi M, Haché C, Bourdages R, Duchaine C (2014) Increased prevalence of Methanosphaera stadtmanae in inflammatory bowel diseases. PLoS One 9(2), e87734

    PubMed Central  PubMed  Google Scholar 

  • Borrel G, Harris HM, Tottey W, Mihajlovski A, Parisot N, Peyretaillade E, Peyret P, Gribaldo S, O'Toole PW, Brugère J-F (2012) Genome sequence of “Candidatus Methanomethylophilus alvus” Mx1201, a methanogenic archaeon from the human gut belonging to a seventh order of methanogens. J Bacteriol 194(24):6944–6945

    CAS  PubMed Central  PubMed  Google Scholar 

  • Borrel G, Harris HM, Parisot N, Gaci N, Tottey W, Mihajlovski A, Deane J, Gribaldo S, Bardot O, Peyretaillade E (2013a) Genome sequence of “Candidatus Methanomassiliicoccus intestinalis” Issoire-Mx1, a third Thermoplasmatales-related methanogenic archaeon from human feces. Genome Announc 1(4):e00453–00413

    PubMed Central  PubMed  Google Scholar 

  • Borrel G, O’Toole PW, Harris HM, Peyret P, Brugère J-F, Gribaldo S (2013b) Phylogenomic data support a seventh order of methylotrophic methanogens and provide insights into the evolution of methanogenesis. Genome Biol Evol 5(10):1769–1780

    CAS  PubMed Central  PubMed  Google Scholar 

  • Borrel G, Gaci N, Peyret P, O'Toole PW, Gribaldo S, Brugère J-F (2014a) Unique characteristics of the pyrrolysine system in the 7th order of methanogens: implications for the evolution of a genetic code expansion cassette. Archaea 27:374146

    Google Scholar 

  • Borrel G, Parisot N, Harris HM, Peyretaillade E, Gaci N, Tottey W, Bardot O, Raymann K, Gribaldo S, Peyret P (2014b) Comparative genomics highlights the unique biology of Methanomassiliicoccales, a Thermoplasmatales-related seventh order of methanogenic archaea that encodes pyrrolysine. BMC Genomics 15(1):679

    PubMed Central  PubMed  Google Scholar 

  • Bragalini C, Ribière C, Parisot N, Vallon L, Prudent E, Peyretaillade E, Girlanda M, Peyret P, Marmeisse R, Luis P (2014) Solution hybrid selection capture for the recovery of functional full-length eukaryotic cdnas from complex environmental samples. DNA Res 21(6):685–694

    PubMed Central  PubMed  Google Scholar 

  • Brugère J-F, Mihajlovski A, Missaoui M, Peyret P (2009) Tools for stools: the challenge of assessing human intestinal microbiota using molecular diagnostics. Expert Rev Mol Diagn 9(4):353–365

    PubMed  Google Scholar 

  • Brugère J-F, Féria-Gervasio D, Alric M, Tottey W, Popse Z (2011) The ECSIM concept (Environmental Control System for Intestinal Microbiota) and its derivative versions to help better understand human gut biology. In: Gargiulo GD, McEwan A (eds) Applied Biomedical Engineering, vol 4, Chap., pp 63–82

    Google Scholar 

  • Brugère J-F, Borrel G, Gaci N, Tottey W, O’Toole PW, Malpuech-Brugère C (2014) Archaebiotics: proposed therapeutic use of archaea to prevent trimethylaminuria and cardiovascular disease. Gut Microbes 5(1):5–10

    PubMed Central  PubMed  Google Scholar 

  • Brune A (2014) Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol 12(3):168–180

    CAS  PubMed  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carbonero F, Benefiel AC, Gaskins HR (2012) Contributions of the microbial hydrogen economy to colonic homeostasis. Nat Rev Gastroenterol Hepatol 9(9):504–518

    CAS  PubMed  Google Scholar 

  • Chaban B, Hill JE (2012) A ‘universal’ type II chaperonin PCR detection system for the investigation of archaea in complex microbial communities. ISME J 6(2):430–439

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chaudhary PP, Sirohi SK, Kumar S (2011) Improved extraction of quality DNA from methanogenic archaea present in rumen liquor for PCR application. Asian J Anim Sci 5(3):166–174

    CAS  Google Scholar 

  • Chaudhary PP, Dagar SS, Sirohi SK (2012) Comparative quantification of major rumen microbial population in Indian Cattle and Buffalo fed on wheat straws based diet. Prime J of Microbiol Res 2(2):105–108

    Google Scholar 

  • Chaudhary PP, Wright A-DG, Brablcová L, Buriánková I, Bednařík A, Rulík M (2014) Dominance of Methanosarcinales phylotypes and depth-wise distribution of methanogenic community in fresh water sediments of sitka stream from czech republic. Curr Microbiol 69(6):809–816

    CAS  PubMed  Google Scholar 

  • Ciesielski S, Bulkowska K, Dabrowska D, Kaczmarczyk D, Kowal P, Mozejko J (2013) Ribosomal intergenic spacer analysis as a tool for monitoring methanogenic archaea changes in an anaerobic digester. Curr Microbiol 67(2):240–248

    CAS  PubMed Central  PubMed  Google Scholar 

  • Claesson MJ, O'Toole PW (2010) Evaluating the latest high-throughput molecular techniques for the exploration of microbial gut communities. Gut Microbes 1(4):277–278

    PubMed Central  PubMed  Google Scholar 

  • Conrad R, Ji Y, Noll M, Klose M, Claus P, Enrich-Prast A (2014) Response of the methanogenic microbial communities in amazonian oxbow lake sediments to desiccation stress. Environ Microbiol 16(6):1682–1694

    CAS  PubMed  Google Scholar 

  • Denonfoux J, Parisot N, Dugat-Bony E, Biderre-Petit C, Boucher D, Morgavi DP, Le Paslier D, Peyretaillade E, Peyret P (2013) Gene capture coupled to high-throughput sequencing as a strategy for targeted metagenome exploration. DNA Res 20(2):185–196

    CAS  PubMed Central  PubMed  Google Scholar 

  • Deppenmeier U, Lienard T, Gottschalk G (1999) Novel reactions involved in energy conservation by methanogenic archaea. FEBS Lett 457(3):291–297

    CAS  PubMed  Google Scholar 

  • Di Rienzi SC, Sharon I, Wrighton KC, Koren O, Hug LA, Thomas BC, Goodrich JK, Bell JT, Spector TD, Banfield JF (2013) The human gut and groundwater harbor non-photosynthetic bacteria belonging to a new candidate phylum sibling to Cyanobacteria. Elife 2, e01102

    PubMed Central  PubMed  Google Scholar 

  • Doddema HJ, Vogels GD (1978) Improved identification of methanogenic bacteria by fluorescence microscopy. Appl Environ Microbiol 36(5):752–754

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dridi B, Henry M, El Khéchine A, Raoult D, Drancourt M (2009) High prevalence of Methanobrevibacter smithii and Methanosphaera stadtmanae detected in the human gut using an improved DNA detection protocol. PLoS One 4(9), e7063

    PubMed Central  PubMed  Google Scholar 

  • Dridi B, Fardeau M-L, Ollivier B, Raoult D, Drancourt M (2012) Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces. Int J Syst Evol Microbiol 62:1902–1907

    CAS  PubMed  Google Scholar 

  • Dugat-Bony E, Peyretaillade E, Parisot N, Biderre-Petit C, Jaziri F, Hill D, Rimour S, Peyret P (2012) Detecting unknown sequences with DNA microarrays: explorative probe design strategies. Environ Microbiol 14(2):356–371

    CAS  PubMed  Google Scholar 

  • Dumont MG, Murrell JC (2005) Stable isotope probing—linking microbial identity to function. Nat Rev Microbiol 3(6):499–504

    CAS  PubMed  Google Scholar 

  • Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308(5728):1635–1638

    PubMed Central  PubMed  Google Scholar 

  • Feria-Gervasio D, Denis S, Alric M, Brugère J-F (2011) In vitro maintenance of a human proximal colon microbiota using the continuous fermentation system P-ECSIM. Appl Microbiol Biotechnol 91(5):1425–1433

    CAS  PubMed  Google Scholar 

  • Feria-Gervasio D, Tottey W, Gaci N, Alric M, Cardot J-M, Peyret P, Martin J-F, Pujos E, Sébédio J-L, Brugère J-F (2014) Three-stage continuous culture system with a self-generated anaerobia to study the regionalized metabolism of the human gut microbiota. J Microbiol Methods 96:111–118

    CAS  PubMed  Google Scholar 

  • Fisher MM, Triplett EW (1999) Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl Environ Microbiol 65(10):4630–4636

    CAS  PubMed Central  PubMed  Google Scholar 

  • Franke-Whittle IH, Goberna M, Pfister V, Insam H (2009) Design and development of the ANAEROCHIP microarray for investigation of methanogenic communities. J Microbiol Methods 79(3):279–288

    CAS  PubMed  Google Scholar 

  • Fricke WF, Seedorf H, Henne A, Krüer M, Liesegang H, Hedderich R, Gottschalk G, Thauer RK (2006) The genome sequence of Methanosphaera stadtmanae reveals why this human intestinal archaeon is restricted to methanol and H2 for methane formation and ATP synthesis. J Bacteriol 188(2):642–658

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gaci N, Borrel G, Tottey W, O’Toole PW, Brugère J-F (2014) Archaea and the human gut: new beginning of an old story. World J Gastroenterol 20(43):16062–16078

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gaston MA, Jiang R, Krzycki JA (2011) Functional context, biosynthesis, and genetic encoding of pyrrolysine. Curr Opin Microbiol 14(3):342–349

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gibson GR, Cummings JH, Macfarlane GT (1988) Use of a three-stage continuous culture system to study the effect of mucin on dissimilatory sulfate reduction and methanogenesis by mixed populations of human gut bacteria. Appl Environ Microbiol 54(11):2750–2755

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gnirke A, Melnikov A, Maguire J, Rogov P, LeProust EM, Brockman W, Fennell T, Giannoukos G, Fisher S, Russ C (2009) Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol 27(2):182–189

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goldenberg O, Herrmann S, Marjoram G, Noyer-Weidner M, Hong G, Bereswill S, Göbel UB (2007) Molecular monitoring of the intestinal flora by denaturing high performance liquid chromatography. J Microbiol Methods 68(1):94–105

    CAS  PubMed  Google Scholar 

  • Goodman AL, Kallstrom G, Faith JJ, Reyes A, Moore A, Dantas G, Gordon JI (2011) Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. Proc Natl Acad Sci U S A 108(15):6252–6257

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goodrich JK, Di Rienzi SC, Poole AC, Koren O, Walters WA, Caporaso JG, Knight R, Ley RE (2014a) Conducting a microbiome study. Cell 158(2):250–262

    CAS  PubMed  Google Scholar 

  • Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, Beaumont M, Van Treuren W, Knight R, Bell JT (2014b) Human genetics shape the gut microbiome. Cell 159(4):789–799

    CAS  PubMed  Google Scholar 

  • Gorlas A, Robert C, Gimenez G, Drancourt M, Raoult D (2012) Complete genome sequence of Methanomassiliicoccus luminyensis, the largest genome of a human-associated Archaea species. J Bacteriol 194(17):4745–4745

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hales BA, Edwards C, Ritchie DA, Hall G, Pickup RW, Saunders JR (1996) Isolation and identification of methanogen-specific DNA from blanket bog peat by PCR amplification and sequence analysis. Appl Environ Microbiol 62(2):668–675

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hansen EE, Lozupone CA, Rey FE, Wu M, Guruge JL, Narra A, Goodfellow J, Zaneveld JR, McDonald DT, Goodrich JA (2011) Pan-genome of the dominant human gut-associated archaeon, Methanobrevibacter smithii, studied in twins. Proc Natl Acad Sci U S A 108(Supplement 1):4599–4606

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hoffmann C, Dollive S, Grunberg S, Chen J, Li H, Wu GD, Lewis JD, Bushman FD (2013) Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS One 8(6), e66019

    CAS  PubMed Central  PubMed  Google Scholar 

  • Iino T, Tamaki H, Tamazawa S, Ueno Y, Ohkuma M, Suzuki K, Igarashi Y, Haruta S (2013) Candidatus Methanogranum caenicola: a novel methanogen from the anaerobic digested sludge, and proposal of Methanomassiliicoccaceae fam. nov. and Methanomassiliicoccales ord. nov., for a methanogenic lineage of the class Thermoplasmata. Microbes Environ 28:244–250

    PubMed Central  PubMed  Google Scholar 

  • Illmer P, Reitschuler C, Wagner AO, Schwarzenauer T, Lins P (2014) Microbial succession during thermophilic digestion: the potential of Methanosarcina sp. PLoS One 9(2), e86967

    PubMed Central  PubMed  Google Scholar 

  • Janssen PH, Kirs M (2008) Structure of the archaeal community of the rumen. Appl Environ Microbiol 74(12):3619–3625

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jaziri F, Parisot N, Abid A, Denonfoux J, Ribière C, Gasc C, Boucher D, Brugère J-F, Mahul A, Hill DR (2014) PhylOPDb: a 16S rRNA oligonucleotide probe database for prokaryotic identification. Database 2014:bau036

  • Kim G, Deepinder F, Morales W, Hwang L, Weitsman S, Chang C, Gunsalus R, Pimentel M (2012) Methanobrevibacter smithii is the predominant methanogen in patients with constipation-predominant IBS and methane on breath. Dig Dis Sci 57(12):3213–3218

    CAS  PubMed  Google Scholar 

  • Kittelmann S, Seedorf H, Walters WA, Clemente JC, Knight R, Gordon JI, Janssen PH (2013) Simultaneous amplicon sequencing to explore co-occurrence patterns of bacterial, archaeal and eukaryotic microorganisms in rumen microbial communities. PLoS One 8(2), e47879

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klingl A (2014) S-layer and cytoplasmic membrane–exceptions from the typical archaeal cell wall with a focus on double membranes. Front Microbiol 5:624

    PubMed Central  PubMed  Google Scholar 

  • Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, Britt EB, Fu X, Wu Y, Li L, Smith JD, DiDonato JA, Chen J, Li H, Wu GD, Lewis JD, Warrier M, Brown JM, Krauss RM, Tang WH, Bushman FD, Lusis AJ, Hazen SL (2013) Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 19(5):576–585

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krzycki JA (2004) Function of genetically encoded pyrrolysine in corrinoid-dependent methylamine methyltransferases. Curr Opin Chem Biol 8(5):484–491

    CAS  PubMed  Google Scholar 

  • Kubota K, Imachi H, Kawakami S, Nakamura K, Harada H, Ohashi A (2008) Evaluation of enzymatic cell treatments for application of CARD-FISH to methanogens. J Microbiol Methods 72(1):54–59

    CAS  PubMed  Google Scholar 

  • Lagier JC, Armougom F, Million M, Hugon P, Pagnier I, Robert C, Bittar F, Fournous G, Gimenez G, Maraninchi M (2012) Microbial culturomics: paradigm shift in the human gut microbiome study. Clin Microbiol Infect 18(12):1185–1193

    CAS  PubMed  Google Scholar 

  • Lang K, Schuldes J, Klingl A, Poehlein A, Daniel R, Brune A (2015) Comparative genome analysis of "Candidatus Methanoplasma termitum" indicates a new mode of energy metabolism in the seventh order of methanogens. Appl Environ Microbiol 81(4):1338–1352

    CAS  PubMed  Google Scholar 

  • Lepp PW, Brinig MM, Ouverney CC, Palm K, Armitage GC, Relman DA (2004) Methanogenic archaea and human periodontal disease. Proc Natl Acad Sci U S A 101(16):6176–6181

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 102(31):11070–11075

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu Y, Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci 1125:171–89

    CAS  PubMed  Google Scholar 

  • Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489:220–230

    CAS  PubMed Central  PubMed  Google Scholar 

  • Luton PE, Wayne JM, Sharp RJ, Riley PW (2002) The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 148(Pt 11):3521–3530

    CAS  PubMed  Google Scholar 

  • Ma L, Kim J, Hatzenpichler R, Karymov MA, Hubert N, Hanan IM, Chang EB, Ismagilov RF (2014) Gene-targeted microfluidic cultivation validated by isolation of a gut bacterium listed in human microbiome project's most wanted taxa. Proc Natl Acad Sci U S A 111(27):9768–9773

    CAS  PubMed Central  PubMed  Google Scholar 

  • Macfarlane GT, Cummings JH, Macfarlane S, Gibson GR (1989) Influence of retention time on degradation of pancreatic enzymes by human colonic bacteria grown in a 3-stage continuous culture system. J Appl Bacteriol 67(5):520–527

    CAS  PubMed  Google Scholar 

  • Macfarlane GT, Macfarlane S, Gibson GR (1998) Validation of a three-stage compound continuous culture system for investigating the effect of retention time on the ecology and metabolism of bacteria in the human colon. Microb Ecol 35(2):180–187

    CAS  PubMed  Google Scholar 

  • Mach V, Blaser MB, Claus P, Chaudhary PP, Rulik M (2015) Methane production potentials, pathways, and communities of methanogens in vertical sediment profiles of river Sitka. Front Microbiol 6:506

    PubMed Central  PubMed  Google Scholar 

  • Mihajlovski A, Alric M, Brugere JF (2008) A putative new order of methanogenic archaea inhabiting the human gut, as revealed by molecular analyses of the mcrA gene. Res Microbiol 159(7-8):516–521

    CAS  PubMed  Google Scholar 

  • Mihajlovski A, Dore J, Levenez F, Alric M, Brugere JF (2010) Molecular evaluation of the human gut methanogenic archaeal microbiota reveals an age-associated increase of the diversity. Environ Microbiol Rep 2(2):272–280

    CAS  PubMed  Google Scholar 

  • Miller TL, Wolin MJ (1985) Methanosphaera stadtmaniae gen. nov., sp. nov.: a species that forms methane by reducing methanol with hydrogen. Arch Microbiol 141(2):116–122

    CAS  PubMed  Google Scholar 

  • Miller TL, Wolin MJ (1986) Methanogens in human and animal intestinal tracts. Syst Appl Microbiol 7(2):223–229

    CAS  Google Scholar 

  • Miller TL, Wolin MJ, Conway de Macario E, Macario AJ (1982) Isolation of Methanobrevibacter smithii from human feces. Appl Environ Microbiol 43(1):227–232

    CAS  PubMed Central  PubMed  Google Scholar 

  • Million M, Maraninchi M, Henry M, Armougom F, Richet H, Carrieri P, Valero R, Raccah D, Vialettes B, Raoult D (2012) Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii. Int J Obes 36(6):817–825

    CAS  Google Scholar 

  • Muyzer G (1999) DGGE/TGGE a method for identifying genes from natural ecosystems. Curr Opin Microbiol 2(3):317–322

    CAS  PubMed  Google Scholar 

  • Nakamura N, Leigh SR, Mackie RI, Gaskins HR (2009) Microbial community analysis of rectal methanogens and sulfate reducing bacteria in two non-human primate species. J Med Primatol 38(5):360–370

    CAS  PubMed  Google Scholar 

  • Nam YD, Chang HW, Kim KH, Roh SW, Kim MS, Jung MJ, Lee SW, Kim JY, Yoon JH, Bae JW (2008) Bacterial, archaeal, and eukaryal diversity in the intestines of Korean people. J Microbiol 46(5):491–501

    CAS  PubMed  Google Scholar 

  • Nava GM, Carbonero F, Croix JA, Greenberg E, Gaskins HR (2012a) Abundance and diversity of mucosa-associated hydrogenotrophic microbes in the healthy human colon. ISME J 6(1):57–70

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nava GM, Carbonero F, Ou J, Benefiel AC, O'Keefe SJ, Gaskins HR (2012b) Hydrogenotrophic microbiota distinguish native africans from african and european americans. Environ Microbiol Rep 4(3):307–315

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nielsen HB, Almeida M, Juncker AS, Rasmussen S, Li J, Sunagawa S, Plichta DR, Gautier L, Pedersen AG, Le Chatelier E, Pelletier E, Bonde I, Nielsen T, Manichanh C, Arumugam M, Batto JM, Quintanilha Dos Santos MB, Blom N, Borruel N, Burgdorf KS, Boumezbeur F, Casellas F, Dore J, Dworzynski P, Guarner F, Hansen T, Hildebrand F, Kaas RS, Kennedy S, Kristiansen K, Kultima JR, Leonard P, Levenez F, Lund O, Moumen B, Le Paslier D, Pons N, Pedersen O, Prifti E, Qin J, Raes J, Sorensen S, Tap J, Tims S, Ussery DW, Yamada T, Renault P, Sicheritz-Ponten T, Bork P, Wang J, Brunak S, Ehrlich SD (2014) Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat Biotechnol 32(8):822–828

    CAS  PubMed  Google Scholar 

  • Nocker A, Burr M, Camper AK (2007) Genotypic microbial community profiling: a critical technical review. Microb Ecol 54(2):276–289

    CAS  PubMed  Google Scholar 

  • O'Donovan MC, Oefner PJ, Roberts SC, Austin J, Hoogendoorn B, Guy C, Speight G, Upadhyaya M, Sommer SS, McGuffin P (1998) Blind analysis of denaturing high-performance liquid chromatography as a tool for mutation detection. Genomics 52(1):44–49

    PubMed  Google Scholar 

  • Oefner PJ, Underhill PA (1998) DNA mutation detection using denaturing high-performance liquid chromatography (DHPLC). In Current Protocols in Human Genetics. Wiley, New York, p. 7.10.11-17.10.12

    Google Scholar 

  • Oren A, Garrity GM (2013) List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 63:3931–3934

    Google Scholar 

  • Ouwerkerk D, Klieve AV, Forster RJ (2002) Enumeration of Megasphaera elsdenii in rumen contents by real-time Taq nuclease assay. J Appl Microbiol 92(4):753–758

    CAS  PubMed  Google Scholar 

  • Oxley AP, Lanfranconi MP, Wurdemann D, Ott S, Schreiber S, McGenity TJ, Timmis KN, Nogales B (2010) Halophilic archaea in the human intestinal mucosa. Environ Microbiol 12(9):2398–2410

    PubMed  Google Scholar 

  • Parisot N, Denonfoux J, Dugat-Bony E, Peyretaillade E, Peyret P (2014) Software tools for the selection of oligonucleotide probes for microarrays. In: He Z (ed) Microarrays: current technology, innovations and applications., p 250

    Google Scholar 

  • Paul K, Nonoh JO, Mikulski L, Brune A (2012) "Methanoplasmatales," Thermoplasmatales-related archaea in termite guts and other environments, are the seventh order of methanogens. Appl Environ Microbiol 78(23):8245–53

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peng M, Smith AH, Rehberger TG (2011) Quantification of Propionibacterium acidipropionici P169 bacteria in environmental samples by use of strain-specific primers derived by suppressive subtractive hybridization. Appl Environ Microbiol 77(11):3898–3902

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pimentel M, Gunsalus RP, Rao Satish SC, Zhang H (2012) Methanogens in human health and disease. Am J Gastroenterol Suppl 1:28–33

    CAS  Google Scholar 

  • Polag D, Leiss O, Keppler F (2014) Age dependent breath methane in the German population. Sci Total Environ 481:582–587

    CAS  PubMed  Google Scholar 

  • Poulsen M, Schwab C, Jensen BB, Engberg RM, Spang A, Canibe N, Højberg O, Milinovich G, Fragner L, Schleper C, Weckwerth W, Lund P, Schramm A, Urich T (2013) Methylotrophic methanogenic Thermoplasmata implicated in reduced methane emissions from bovine rumen. Nat Commun 4:1428

    PubMed  Google Scholar 

  • Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Doré J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, MetaHIT C, Bork P, Ehrlich SD, Wang J (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285):59–65

    CAS  PubMed Central  PubMed  Google Scholar 

  • Radajewski S, Ineson P, Parekh NR, Murrell JC (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403(6770):646–649

    CAS  PubMed  Google Scholar 

  • Rajilić-Stojanović M, Heilig HG, Molenaar D, Kajander K, Surakka A, Smidt H, de Vos WM (2009) Development and application of the human intestinal tract chip, a phylogenetic microarray: analysis of universally conserved phylotypes in the abundant microbiota of young and elderly adults. Environ Microbiol 11(7):1736–1751

    PubMed Central  PubMed  Google Scholar 

  • Raymann K, Brochier-Armanet C, Gribaldo S (2015) The two-domain tree of life is linked to a new root for the Archaea. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1420858112

    PubMed  Google Scholar 

  • Rettedal EA, Gumpert H, Sommer MO (2014) Cultivation-based multiplex phenotyping of human gut microbiota allows targeted recovery of previously uncultured bacteria. Nat Commun 5:4714

    CAS  PubMed  Google Scholar 

  • Roh SW, Abell GC, Kim KH, Nam YD, Bae JW (2010) Comparing microarrays and next-generation sequencing technologies for microbial ecology research. Trends Biotechnol 28(6):291–299

    CAS  PubMed  Google Scholar 

  • Romaniuk K, Ziewit LD, Rewniak LD (2014) Molecular markers for detection and phylogenetic analysis of methanogenic consortia. Goldschmidt Abstracts 2110

  • Sahakian AB, Jee SR, Pimentel M (2010) Methane and the gastrointestinal tract. Dig Dis Sci 55(8):2135–2143

    PubMed  Google Scholar 

  • Samuel BS, Gordon JI (2006) A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism. Proc Natl Acad Sci U S A 103(26):10011–10016

    CAS  PubMed Central  PubMed  Google Scholar 

  • Samuel BS, Hansen EE, Manchester JK, Coutinho PM, Henrissat B, Fulton R, Latreille P, Kim K, Wilson RK, Gordon JI (2007) Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut. Proc Natl Acad Sci U S A 104(25):10643–10648

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scanlan PD, Shanahan F, Marchesi JR (2008) Human methanogen diversity and incidence in healthy and diseased colonic groups using mcrA gene analysis. BMC Microbiol 8:79

    PubMed Central  PubMed  Google Scholar 

  • Scavino AF, Ji Y, Pump J, Klose M, Claus P, Conrad R (2013) Structure and function of the methanogenic microbial communities in Uruguayan soils shifted between pasture and irrigated rice fields. Environ Microbiol 15(9):2588–2602

    CAS  PubMed  Google Scholar 

  • Schmitt-Wagner D, Brune A (1999) Hydrogen profiles and localization of methanogenic activities in the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp.). Appl Environ Microbiol 65:4497–4505

    Google Scholar 

  • Seedorf H, Kittelmann S, Henderson G, Janssen PH (2014) RIM-DB: a taxonomic framework for community structure analysis of methanogenic archaea from the rumen and other intestinal environments. PeerJ 5(2), e494

    Google Scholar 

  • Skillman LC, Evans PN, Naylor GE, Morvan B, Jarvis GN, Joblin KN (2004) 16S ribosomal DNA-directed PCR primers for ruminal methanogens and identification of methanogens colonising young lambs. Anaerobe 10(5):277–285

    CAS  PubMed  Google Scholar 

  • Sunagawa S, Mende DR, Zeller G, Izquierdo-Carrasco F, Berger SA, Kultima JR, Coelho LP, Arumugam M, Tap J, Nielsen HB, Rasmussen S, Brunak S, Pedersen O, Guarner F, de Vos WM, Wang J, Li J, Dore J, Ehrlich SD, Stamatakis A, Bork P (2013) Metagenomic species profiling using universal phylogenetic marker genes. Nat Methods 10(12):1196–1199

    CAS  PubMed  Google Scholar 

  • Tajima K, Nagamine T, Matsui H, Nakamura M, Aminov RI (2001) Phylogenetic analysis of archaeal 16S rRNA libraries from the rumen suggests the existence of a novel group of archaea not associated with known methanogens. FEMS Microbiol Lett 200(1):67–72

    CAS  PubMed  Google Scholar 

  • Takahashi S, Tomita J, Nishioka K, Hisada T, Nishijima M (2014) Development of a prokaryotic universal primer for simultaneous analysis of bacteria and archaea using next-generation sequencing. PLoS One 9(8), e105592

    PubMed Central  PubMed  Google Scholar 

  • Tewhey R, Nakano M, Wang X, Pabon-Pena C, Novak B, Giuffre A, Lin E, Happe S, Roberts DN, LeProust EM, Topol EJ, Harismendy O, Frazer KA (2009) Enrichment of sequencing targets from the human genome by solution hybridization. Genome Biol 10(10):R116

    PubMed Central  PubMed  Google Scholar 

  • Thauer RK (1998) Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Microbiology 144:2377–2406

    CAS  PubMed  Google Scholar 

  • Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6(8):579–91

    CAS  PubMed  Google Scholar 

  • Tottey W, Denonfoux J, Jaziri F, Parisot N, Missaoui M, Hill D, Borrel G, Peyretaillade E, Alric M, Harris HM, Jeffery IB, Claesson MJ, O'Toole PW, Peyret P, Brugere JF (2013) The human gut chip "HuGChip", an explorative phylogenetic microarray for determining gut microbiome diversity at family level. PLoS One 8(5), e62544

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tottey W, Gaci N, Borrel G, Alric M, O'Toole PW, Brugère JF (2015) In-vitro model for studying methanogens in human gut microbiota. Anaerobe 34:50–52

    CAS  PubMed  Google Scholar 

  • Tu Q, He Z, Li Y, Chen Y, Deng Y, Lin L, Hemme CL, Yuan T, Van Nostrand JD, Wu L, Zhou X, Shi W, Li L, Xu J, Zhou J (2014) Development of HuMiChip for functional profiling of human microbiomes. PLoS One 9(3), e90546

    PubMed Central  PubMed  Google Scholar 

  • Venema K, van den Abbeele P (2013) Experimental models of the gut microbiome. Best Pract Res Clin Gastroenterol 27(1):115–126

    CAS  PubMed  Google Scholar 

  • Vianna ME, Conrads G, Gomes BP, Horz HP (2009) T-RFLP-based mcrA gene analysis of methanogenic archaea in association with oral infections and evidence of a novel Methanobrevibacter phylotype. Oral Microbiol Immunol 24(5):417–422

    CAS  PubMed  Google Scholar 

  • Walker A, Cerdeno-Tarraga A, Bentley S (2006) Faecal matters. Nat Rev Microbiol 4(8):572–573

    CAS  PubMed  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung YM, Wu Y, Schauer P, Smith JD, Allayee H, Tang WH, DiDonato JA, Lusis AJ, Hazen SL (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472(7341):57–63

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weinstock GM (2012) Genomic approaches to studying the human microbiota. Nature 489(7415):250–256

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zeleke J, Lu SL, Wang JG, Huang JX, Li B, Ogram AV, Quan ZX (2013) Methyl coenzyme M reductase A (mcrA) gene-based investigation of methanogens in the mudflat sediments of Yangtze River estuary, China. Microb Ecol 66(2):257–267

    CAS  PubMed  Google Scholar 

  • Zhang H, DiBaise JK, Zuccolo A, Kudrna D, Braidotti M, Yu Y, Parameswaran P, Crowell MD, Wing R, Rittmann BE, Krajmalnik-Brown R (2009) Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci U S A 106(7):2365–2370

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a PhD. Scholarship support from the French “Ministère de l’Enseignement Supérieur et de la Recherche” to N.G. J.-F.B and P.P.C. thanks the “Université d’Auvergne” for the funding of a post-doctoral fellowship (attributed to P.P.C). P.W.O.T. was supported by Science Foundation Ireland through a Principal Investigator award, by a CSET award to the Alimentary Pharmabiotic Centre, and by an FHRI award to the ELDERMET project by the Dept. Agriculture, Fisheries and Marine of the Government of Ireland. Authors are thankful to Prof. P. Peyret and Dr. E. Peyretaillade for their valuable suggestions during the preparation of the manuscript.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Brugère.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, P.P., Gaci, N., Borrel, G. et al. Molecular methods for studying methanogens of the human gastrointestinal tract: current status and future directions. Appl Microbiol Biotechnol 99, 5801–5815 (2015). https://doi.org/10.1007/s00253-015-6739-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6739-2

Keywords

Navigation