Skip to main content

Advertisement

Log in

Molecular biology-based methods for quantification of bacteria in mixed culture: perspectives and limitations

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Species-specific enumeration of mixed community is invaluable as it facilitates a better understanding of the significance of the individual strains, their interactions, and the underlying mechanisms of community dynamics. Mixed microbial community has been characterized by microbiological, biochemical, or molecular biology-based methods. While microbiological and biochemical techniques do not provide adequate quantitative information of the members of the consortia and require additional techniques for a more comprehensive analysis, molecular biology-based methods analyze the microbial consortium based on specific DNA sequences and do not require isolation and culturing of bacteria for quantitative analysis. These methods outshine conventional culture-based techniques in terms of better sensitivity, reproducibility, and reliability. Quantitative molecular biology methods have been classified as PCR-based and probe hybridization methods. The PCR-based methods includes quantitative real-time PCR and terminal restriction fragment length polymorphism, while fluorescent in situ hybridization and DNA microarrays fall under probe hybridization methods. The workflow, the quantification methods, and their potential applications are discussed in this review by highlighting their advantages and possible limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Achilleos C, Berthier F (2013) Quantitative PCR for the specific quantification of Lactococcus lactis and Lactobacillus paracasei and its interest for Lactococcus lactis in cheese samples. Food Microbiol 36:286–295

    CAS  PubMed  Google Scholar 

  • Åkerlund T, Nordstörm K, Bernander R (1995) Analysis of cell size and DNA content in exponentially growing and stationary-phase batch cultures of Escherichia coli. J Bacteriol 177:6791–6797

    PubMed Central  PubMed  Google Scholar 

  • Alvarez G, González M, Isabal S, Blanc V, León R (2013) Method to quantify live and dead cells in multi-species oral biofilm by real-time PCR with propidium monoazide. AMB Express 3:1

    PubMed Central  PubMed  Google Scholar 

  • Amann R, Fuchs B (2008) Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques

  • Bae J-W, Rhee S-K, Park JR, Chung W-H, Nam Y-D, Lee I, Kim H, Park Y-H (2005) Development and evaluation of genome-probing microarrays for monitoring lactic acid bacteria. Appl Environ Microbiol 71:8825–8835

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ballarini A, Segata N, Huttenhower C, Jousson O (2013) Simultaneous quantification of multiple bacteria by the BactoChip microarray designed to target species-specific marker genes. PLoS One 8:e55764

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barra Caracciolo A, Grenni P, Cupo C, Rosetti S (2005) In situ analysis of native microbial communities in complex samples with high particulate loads. FEMS Microbiol Lett 253:55–58

    CAS  PubMed  Google Scholar 

  • Bastein P, Procop GW, Reischl U (2008) Quantitative real-time PCR is not more sensitive than “conventional” PCR. J Clin Microbiol 46:1897–1900

    Google Scholar 

  • Bonito RD, Marone A, Massini G, Patriarca C, Rosa S, Signorini A, Varrone C, Viola C, Izzo G (2013) Characterization by length heterogeneity (LH)-PCR of a hydrogen-producing community obtained in dark fermentation using coastal lake sediment as an inoculum. Energy Sustain Soc 3:3

    Google Scholar 

  • Broadaway SC, Barton SA, Pyle BH (2003) Rapid staining and enumeration of small numbers of total bacteria in water by solid – phase laser cytometry. Appl Environ Microbiol 69:4272–4273

    CAS  PubMed Central  PubMed  Google Scholar 

  • Caplice E, Fitzgerald GF (1999) Food fermentations: role of microorganisms in food production and preservation. Int J Food Microbiol 50:131–149

    CAS  PubMed  Google Scholar 

  • Case RJ, Boucher Y, Dahllöf I, Holmström C, Doolittle WF, Kjelleberg S (2007) Use of 16S rRNA and rpoB genes as molecular markers for microbial ecology studies. Appl Environ Microbiol 73:278–288

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coats ER, Loge FJ, Smith WA, Thompson DN, Wolcott MP (2007) Functional stability of a mixed microbial consortium producing PHA from waste carbon sources. Appl Biochem Biotechnol 136–140:909–926

    Google Scholar 

  • Coşkuner G (2002) A new molecular technique for the identification of micro-organisms in biological treatment plants: fluorescent in situ hybridization. Turk J Biol 26:57–63

    Google Scholar 

  • Crosby LD, Criddle CS (2003) Understanding bias in microbial community analysis techniques due to rrn operon copy number heterogeneity. Biotechniques 34:790–794

    CAS  PubMed  Google Scholar 

  • Cupples AM (2008) Real-time PCR quantification of dehalococcoides populations: methods and applications. J Microbiol Methods 72:1–11

    CAS  PubMed  Google Scholar 

  • Daims H, Ramsing NB, Schleifer K-H, Wagner M (2001) Cultivation-independent, semiautomatic determination of absolute bacterial cell numbers in environmental samples by fluorescence in situ hybridization. Appl Environ Microbiol 67:5810–5818

    CAS  PubMed Central  PubMed  Google Scholar 

  • Delbés C, Moletta R, Godon J-J (2000) Monitoring of activity dynamics of an anaerobic digester bacterial community using 16S rRNA polymerase chain reaction–single-strand conformation polymorphism analysis. Environ Microbiol 2:506–515

    PubMed  Google Scholar 

  • Delgenes JP, Escare MC, Laplace JM, Moletta R, Navarro JM (1998) Biological production of industrial chemicals, i.e. xylitol and ethanol, from lignocelluloses by controlled mixed culture systems. Ind Crop Prod 7:101–111

    CAS  Google Scholar 

  • Díaz-Ramírez IJ, Escalante-Espinosa E, Favela-Torres E, Guítterrez-Rojas M, Ramírez-Saad H (2008) Design of defined mixed cultures for biodegradation of specific crude oil fractions, using population dynamics analysis by DGGE. Int Biodeterior Biodegrad 62:21–30

    Google Scholar 

  • Dubey SK, Tripathi AK, Upadhyay SN (2006) Exploration of soil bacterial communities for their potential as bioresource. Bioresour Technol 97:2217–2224

    CAS  PubMed  Google Scholar 

  • Erlandson K, Batt CA (1997) Strain-specific differentiation of Lactococci in mixed starter culture populations using randomly amplified polymorphic DNA—derived probes. Appl Environ Microbiol 63:2702–2707

    CAS  PubMed Central  PubMed  Google Scholar 

  • Everett KR, Rees-George J, Pushparajah IPS, Janssen BJ, Luo Z (2010) Advantages and disadvantages of microarrays to study microbial population dynamics—a minireview. N Z Plant Prot 63:1–6

    CAS  Google Scholar 

  • Ezaki M, Iwami M, Yamashita M, Komori T, Umehara K, Imanaka H (1992) Biphenomycin A production by a mixed culture. Appl Environ Microbiol 58:3879–3882

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fang C, Radosevich M, Fuhrmann JJ (2001) Characterization of rhizosphere microbial community structure in five similar grass species using FAME and BIOLOG analyses. Soil Biol Biochem 33:679–682

    CAS  Google Scholar 

  • Fedi S, Tremaroli V, Scala D, Perez-Jimenez JR, Fava F, Young L, Zannoni D (2005) T-RFLP analysis of bacterial communities in cyclodextrin-amended bioreactors developed for biodegradation of polychlorinated biphenyls. Res Microbiol 156:201–210

    CAS  PubMed  Google Scholar 

  • Forney LJ, Zhou X, Brown CJ (2004) Molecular microbial ecology: land of the one-eyed king. Curr Opin Microbiol 7:210–220

    CAS  PubMed  Google Scholar 

  • Fox GE, Wisotzkey JD, Jurtshuk P Jr (1992) How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42:166–170

    CAS  PubMed  Google Scholar 

  • Franklin RB, Taylor DB, Mill AL (1999) Characterization of microbial communities using randomly amplified polymorphic DNA (RAPD). J Microbiol Methods 35:225–235

    CAS  PubMed  Google Scholar 

  • Friedrich U, Lenke J (2006) Improved enumeration of lactic acid bacteria in mesophilic dairy starter cultures by using multiplex quantitative real-time PCR and flow cytometry-fluorescence in situ hybridization. Appl Environ Microbiol 72:4163–4171

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gamo M, Shoji T (1999) A method of profiling microbial communities based on a most-probable-number assay that uses BIOLOG plates and multiple sole carbon sources. Appl Environ Microbiol 65:4419–4425

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grattepanche F, Lacroix C, Audet P, Lapointe G (2005) Quantification by real-time PCR of Lactococcus lactis subsp. cremoris in milk fermented by a mixed culture. Appl Microbiol Biotechnol 66:414–421

    CAS  PubMed  Google Scholar 

  • Hagman M, Nielsen JL, Nielsen PH, Jansen JI (2008) Mixed carbon sources for nitrate reduction in activated sludge-identification of bacteria and process activity studies. Water Res 42:1539–1546

    CAS  PubMed  Google Scholar 

  • Hamilton MS, Schremmer R (2002) High frequency of competitive inhibition in the Roche Cobas AMPLICOR multiplex PCR for Chlamydia trachomatis and Neisseria gonorrhoeae. J Clin Microbiol 40:4393

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hatt JK, Löffler FE (2012) Quantitative real-time PCR (qPCR) detection chemistries affect enumeration of the Dehalococcoides 16S rRNA gene in groundwater. J Microbiol Methods 88:263–270

    CAS  PubMed  Google Scholar 

  • Herbel SR, Lauzat B, von Nickisch-Rosengk M, Kuhn M, Murugaiyan J, Weiler LH, Guenther S (2013) Species-specific quantification of probiotic lactobacilli in yoghurt by quantitative real-time PCR. J Appl Microbiol. doi:10.1111/jam.12341

    PubMed  Google Scholar 

  • Hiibel SR, Pereyra LP, Inman LY, Tischer A, Reisman D, Reardon KF, Pruden A (2008) Microbial community analysis of two field-scale sulfate-reducing bioreactors treating mine drainage. Environ Microbiol 10:2087–2097

    CAS  PubMed  Google Scholar 

  • Hjort K, Bernander R (1999) Changes in cell size and DNA content in Sulfolobus cultures during dilution and temperature shift experiments. J Bacteriol 181:5669–5675

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hristova KR, Lutenegger CM, Scow KM (2001) Detection and quantification of methyl tert-butyl ether-degrading strain PM1 by real-time TaqMan PCR. Appl Environ Microbiol 67:5154–5160

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hu H-Y, Lim B-R, Goto N, Fujie K (2001) Analytical precision and repeatability of respiratory quinones for quantitative study of microbial community structure in environmental samples. J Microbiol Methods 47:17–24

    CAS  PubMed  Google Scholar 

  • Kim D, Jhon D-Y, Park K-H, Day DF (1996) Mixed culture fermentation for the production of clinical quality dextran with starch and sucrose. Biotechnol Lett 18:1031–1034

    CAS  Google Scholar 

  • Kim J, Lim J, Lee C (2013) Quantitative real-time PCR approaches for microbial community studies in wastewater treatment systems: applications and considerations. Biotechnol Adv. doi:10.1016/j.biotechadv.2013.05.010

    Google Scholar 

  • Klappenbach JA, Saxman PR, Cole JR, Schmidt TM (2001) rrndb: the ribosomal RNA operon copy number database. Nucleic Acids Res 29:181–184

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kleerebezem R, Loosdrecht MC (2007) Mixed culture biotechnology for bioenergy production. Curr Opin Biotechnol 18:207–212

    CAS  PubMed  Google Scholar 

  • Kösters K, Reischl U, Schmetz J, Riffelmann M, König CHWV (2002) Real-time lightcycler PCR for detection and discrimination of Bordtella pertussis and Bordtella parapertussis. J Clin Microbiol 40:1719–1722

    PubMed Central  PubMed  Google Scholar 

  • Lee S, Fuhrman JA (1990) DNA hybridization to compare species compositions of natural bacterioplankton assemblages. Appl Environ Microbiol 56:739–746

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee H-W, Lee S-Y, Lee J-W, Park J-B, Choi E-S, Park YK (2002) Molecular characterization of microbial community in nitrate-removing activated sludge. FEMS Microbiol Ecol 41:85–94

    CAS  PubMed  Google Scholar 

  • Levy-Booth DJ, Campbell RG, Gulden RH, Hart MM, Powell JR, Klironomos JN, Pauls KP, Swanton CJ, Trevors JT, Dunfield KE (2007) Cycling of extracellular DNA in the soil environment. Soil Biol Biochem 39:2977–2991

    CAS  Google Scholar 

  • Lisle JT, Hamilton MA, Willse AR, McFeters GA (2004) Comparison of fluorescence microscopy and solid-phase cytometry methods for counting bacteria in water. Appl Environ Microbiol 70:5343–5348

    CAS  PubMed Central  PubMed  Google Scholar 

  • Livak KJ (1999) Allelic discrimination using fluorogenic probes and the 5′ nuclease assay. Genet Anal Biomol Eng 14:143–149

    CAS  Google Scholar 

  • Maeda H, Fujimoto C, Haruki Y, Maeda T, Kokeguchi S, Petelin M, Arai H, Tanimoto I, Nishimura F, Takashiba S (2003) Quantitative real-time PCR using TaqMan and SYBR Green for Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, tetQ gene and total bacteria. FEMS Immunol Med Microbiol 39:81–86

    CAS  PubMed  Google Scholar 

  • Matturo B, Heavner GL, Richardson RE, Rossetti S (2013) Quantitative estimation of Dehalococcoides mccartyi at laboratory and field scale: comparative study between CARD-FISH and Real Time PCR. J Microbiol Methods 93:127–133

    Google Scholar 

  • McGuigan FEA, Ralston SH (2002) Single nucleotide polymorphism detection: allelic discrimination using TaqMan. Psychiatr Genet 12:133–136

    PubMed  Google Scholar 

  • Merwe TVD, Wolfaardt F, Riedel K-H (2003) Analysis of functional diversity of the microbial communities in a paper-mill water system. Water SA 29:31–34

    Google Scholar 

  • Mohan VS (2009) Harnessing of biohydrogen from wastewater treatment using mixed fermentative consortia: process evaluation towards optimization. Int J Hydrogen Energy 34:7460–7474

    Google Scholar 

  • Müller S, Babel W (2003) Analysis of bacterial DNA patterns—an approach for controlling biotechnological processes. J Microbiol Methods 55:851–858

    PubMed  Google Scholar 

  • Nagarajan K, Loh KC, Swarup S (2013) Bioinformatics and molecular biology for quantification of closely related bacteria. Appl Microbiol Biotechnol 97:6489–6502

    CAS  PubMed  Google Scholar 

  • Nakano Y, Takeshita T, Kamio N, Shiota S, Shibata Y, Yasui M, Yamashita Y (2008) Development and application of a T-RFLP data analysis method using correlation coefficient matrices. J Microbiol Methods 75:501–505

    CAS  PubMed  Google Scholar 

  • Nakatsu CH (2007) Soil microbial community analysis using denaturing gradient gel electrophoresis. Soil Sci Soc Am J 71:562–571

    CAS  Google Scholar 

  • Nocker A, Camper AK (2006) Selective removal of DNA from dead cells of mixed bacterial communities by use of ethidium monoazide. Appl Environ Microbiol 72:1997–2004

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oslen GJ, Lane DJ, Giovannoni SJ, Pace NR (1986) Microbial ecology and evolution: ribosomal RNA approach. Annu Rev Microbiol 40:337–365

    Google Scholar 

  • Ovchinnikova AA, Vetrova AA, Filonov AE, Boronin AM (2009) Phenanthrene biodegradation and interaction of Pseudomonas putida BS3701 and Burkholderia sp. BS3702 in plant rhizosphere. Microbiology 78:433–439

    CAS  Google Scholar 

  • Peplies J, Glöckner FO, Amann R (2003) Optimization strategies for DNA microarray-based detection of bacteria with 16S rRNA-targeting oligonucleotide probes. Appl Environ Microbiol 69:1397–1407

    CAS  PubMed Central  PubMed  Google Scholar 

  • Phrommanich S, Suanjit S, Upatham S, Grams SV, Kruatrache M, Pokethitiyook P, Korge G, Hofmann A (2009) Quantitative detection of the oil-degrading bacterium Acinetobacter sp. Strain MUB1 by hybridization probe based real-time PCR. Microbiol Res 164:486–492

    CAS  PubMed  Google Scholar 

  • Pogačić T, Kelava N, Zamberlin Š, Dolenčić-Špehar I, Samaržija D (2010) Methods for culture-independent identification of lactic acid bacteria in dairy products. Food Technol Biotechnol 48:3–10

    Google Scholar 

  • Raemdonck HV, Maes A, Ossieur W, Verthé K, Vercauteren T, Verstraete W, Boon N (2006) Real time PCR quantification in groundwater of the dehalrespiring Desulfitobacterium dichloroeliminans strain DCA1. J Microbiol Methods 67:294–303

    PubMed  Google Scholar 

  • Rastogi G, Sani RK (2011) Molecular techniques to assess microbial community structure, function, and dynamics in the environment. In: Iqbal A, Farah A, John P (eds) Microbes and microbial technology. Springer, New York, pp 29–57

    Google Scholar 

  • Reardon KF, Mosteller DC, Rogers JB, DuTeau NM, Kim K-H (2002) Biodegradation kinetics of aromatic hydrocarbon mixtures by pure and mixed bacterial cultures. Environ Health Perspect 110:1005–1011

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rhee SK, Liu X, Wu L-Y, Chong SC, Wan X, Zhou J (2004) Detection of genes involved in biodegradation and biotransformation of in microbial communities by using 50-mer oligonucleotide microarrays. Appl Environ Microbiol 70:4303–4317

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ririe KM, Rasmussen RP, Wittwer CT (1997) Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal Biochem 245:154–160

    CAS  PubMed  Google Scholar 

  • Ritchie NJ, Schutter ME, Dick RP, Myrold DD (2000) Use of length heterogeneity PCR and fatty acid methyl ester profiles to characterize microbial communities in soil. Appl Environ Microbiol 66:1668–1675

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rogers JB, DuTeau NM, Reardon KF (2000) Use of 16S-rRNA to investigate microbial population dynamics during biodegradation of toluene and phenol by a binary culture. Biotechnol Bioeng 70:436–445

    CAS  PubMed  Google Scholar 

  • Rudi K, Moen B, Drømtorp SM, Holck AL (2005) Use of ethidium monoazide and PCR in combination for quantification of viable and dead cells in complex samples. Appl Environ Microbiol 71:1018–1024

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sanz JL, Kochling T (2007) Molecular biology techniques used in wastewater treatment: an overview. Process Biochem 42:119–133

    CAS  Google Scholar 

  • Saravanan P, Pakshirajan K, Saha P (2008) Kinetics of phenol and m-cresol biodegradation by an indigenous mixed microbial culture isolated from sewage treatment plant. J Environ Sci 20:1508–1513

    CAS  Google Scholar 

  • Schadt CW, Zhou J (2006) Advances in microarray-based technologies for soil microbial community analyses. In: Nannipieri P, Smalla K (eds) Nucleic acids and proteins in soil. Springer, New York, pp 189–203

    Google Scholar 

  • Schmidt JK, Konig B, Reichl U (2007) Characterization of a three bacteria mixed culture in a chemostat: evaluation and application of a quantitative terminal-restriction fragment length polymorphism (T-RFLP) analysis for absolute and species specific cell enumeration. Biotechnol Bioeng 96:738–756

    CAS  PubMed  Google Scholar 

  • Schönhuber H, Fuchs B, Juretschko S, Amann R (1997) Improved sensitivity of whole-cell hybridization by the combination of horseradish peroxidase-labeled oligonucleotides and tyramide signal amplification. Appl Environ Microbiol 63:3268–3273

    PubMed Central  PubMed  Google Scholar 

  • Schweiger F, Tebbe CC (1998) A new approach to utilize PCR-single-strand-conformation polymorphism for 16S rRNA gene-based microbial community analysis. Appl Environ Microbiol 64:4870–4876

    Google Scholar 

  • Singh BK, Nozaries L, Munro S, Anderson IC, Campbell C (2006) Use of multiplex terminal restriction fragment length polymorphism for rapid and simultaneous analysis of different components of the soil microbial community. Appl Environ Microbiol 72:7278–7285

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smalla K, Wachtendorf U, Heuer H, Liu W-T, Forney L (1998) Analysis of BIOLOG GN substrate utilization patterns by microbial communities. Appl Environ Microbiol 64:1220–1225

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smits THM, Devenoges C, Szynalski K, Maillard J, Holliger C (2004) Development of a real-time PCR method for quantification of the three genera Dehalobacter, Dehalococcoides and Desulfitobacterium in microbial communities. J Microbiol Methods 57:369–378

    CAS  PubMed  Google Scholar 

  • Soto K, Collantes G, Zahar M, Kuznar J (2005) Simultaneous enumeration of Phaedactylum tricornutum (MLB 292) and bacteria growing in mixed communities. Lat Am J Aquat Res 33:143–149

    Google Scholar 

  • Spiegelman D, Whissell G, Greer CW (2005) A survey of the methods for the characterization of microbial consortia and communities. Can J Microbiol 51:355–386

    CAS  PubMed  Google Scholar 

  • Stoecker K, Dorninger C, Daims H, Wagner M (2010) Double labeling of oligonucleotide probes for fluorescence in situ hybridization (DOPE-FISH) improves signal intensity and increases rRNA accessibility. Appl Environ Microbiol 76:922–926

    CAS  PubMed Central  PubMed  Google Scholar 

  • Suzuki MT, Taylor LT, DeLong EF (2000) Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 50-nuclease assays. Appl Environ Microbiol 66:4605–4614

    CAS  PubMed Central  PubMed  Google Scholar 

  • Talbot G, Topp E, Palin MF, Massé DI (2008) Evaluation of molecular methods used for establishing the interactions and functions of microorganisms in anaerobic bioreactors. Water Res 42:513–537

    CAS  PubMed  Google Scholar 

  • Thies JE (2007) Soil microbial community analysis using terminal restriction fragment length polymorphism. Soil Sci Soc Am J 71:579–591

    CAS  Google Scholar 

  • Tischer K, Zeder M, Klug R, Pernthaler J, Schattenhofer M, Harms H, Wendeberg A (2012) Fluorescence in situ hybridization (CARD-FISH) of microorganisms in hydrocarbon contaminated aquifer sediment samples. Syst Appl Microbiol 35:526–532

    CAS  PubMed  Google Scholar 

  • Tolvanen KES, Karp MT (2011) Molecular methods for characterizing mixed microbial communities in hydrogen-fermenting systems. J Hydrogen Energy 36:5280–5288

    CAS  Google Scholar 

  • Tourva TP (2003) Copy number of ribosomal operons in prokaryotes and its effect on phylogenetic analysis. Microbiology 72:437–452

    Google Scholar 

  • Traversi D, Villa S, Acri M, Pietrangeli B, Degan R, Gilli G (2011) The role of different methnogen groups evaluated by real-time qPCR as high-efficiency bioindicators of wet anaerobic co-digestion of organic waste. AMB Express 2011:1–28

    Google Scholar 

  • Trotha R, Reichl U, Thies FL, Sperling D, König B (2002) Adaption of a fragment analysis technique to an automated high-throughput multicapillary electrophoresis device for the precise qualitative and quantitative characterization of microbial communities. Electrophoresis 23:1070–1079

    CAS  PubMed  Google Scholar 

  • Uhlik O, Leewis M-C, Strejcek M, Musilova L, Mackova M, Leigh MB, Macek T (2013) Stable isotope probing in the metagenomics era: a bridge towards improved bioremediation. Biotechnol Adv 31:154–165

    CAS  PubMed Central  PubMed  Google Scholar 

  • Valasek MA, Repa JY (2005) The power of real-time PCR. Adv Physiol Educ 29:151–159

    PubMed  Google Scholar 

  • Valera MJ, Torija MJ, Mas A, Mateo E (2013) Acetobacter malorum and Acetobacter cerevisiae identification and quantification by real-time PCR with TaqMan MGB probes. Food Microbiol 36:30–39

    CAS  PubMed  Google Scholar 

  • Van Ert MN, Easterday WR, Simonson TS, U’Ren JM, Pearson T, Kenefic LJ, Busch JD, Huynh LY, Dukerich M, Trim CB, Beaudry J, Welty-Bernard A, Read T, Fraser CM, Ravel J, Keim P (2007) Strain-specific single-nucleotide polymorphism assays for the Bacillus anthracis Ames strain. J Clin Microbiol 45:47–53

    PubMed Central  PubMed  Google Scholar 

  • van Frankenhuyzen JK, Trevors JT, Flemming CA, Lee H, Habash MB (2013) Optimization, validation, and application of a real-time PCR protocol for quantification of viable bacterial cells in municipal sewage sludge and biosolids using reporter genes and Escherichia coli. J Ind Microbiol Biotechnol 40:1251–1261

    PubMed  Google Scholar 

  • Wagner M, Haider S (2012) New trend in fluorescent in situ hybridization for identification and functional analyses of microbes. Curr Opin Biotechnol 23:96–102

    CAS  PubMed  Google Scholar 

  • Wang GCY, Wang Y (1997) Frequency of formation of chimeric molecules as a consequence of PCR coamplification of 16S rRNA genes from mixed bacterial genomes. Appl Environ Microbiol 63:4645–4650

    CAS  PubMed Central  PubMed  Google Scholar 

  • Watanabe K, Yamamoto S, Hino S, Harayama S (1998) Population dynamics of phenol-degrading bacteria in activated sludge determined by gyrB-targeted quantitative PCR. Appl Environ Microbiol 64:1203–1209

    CAS  PubMed Central  PubMed  Google Scholar 

  • Werker AG, Becker J, Huitema C (2003) Assessment of activated sludge microbial community analysis in full-scale biological wastewater treatment plants using patterns of fatty acid isopropyl esters (FAPEs). Water Res 37:2162–2172

    CAS  PubMed  Google Scholar 

  • Wilen B-M, Onuki M, Hermannson M, Lumley D, Mino T (2008) Microbial community structure in activated sludge floc analysed by fluorescence in situ hybridization and its relation to floc stability. Water Res 42:2300–2308

    CAS  PubMed  Google Scholar 

  • Wilson JW, Ramamurthy R, Porwollik S, McClelland M, Hammond T, Allen P, Ott CM, Pierson DL, Nickerson CA (2002) Microarray analysis identifies Salmonella genes belonging to the low-shear modeled microgravity regulon. Proc Natl Acad Sci U S A 99:13807–13812

    CAS  PubMed Central  PubMed  Google Scholar 

  • Winderl C, Anneser B, Griebler C, Meckenstock RU, Lueders T (2008) Depth-Resolved quantification of anaerobic toluene degraders and aquifer microbial community patterns in distinct redox zones of a tar oil contaminant plume. Appl Environ Microbiol 74:792–801

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wittwer CT, Herrmann MG, Moss AA, Rasmussen RP (1997) Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques 22:130–138

    CAS  PubMed  Google Scholar 

  • Wu L, Thompson DK, Liu X, Fields MW, Bagwell CE, Tiedje JM, Zhou J (2004) Development and evaluation of micro-array based whole-genome hybridization for detection of micro-organisms within the context of environmental applications. Environ Sci Technol 38:6775–6782

    CAS  PubMed  Google Scholar 

  • Yilmaz LS, Parnerkar S, Noguera DR (2011) mathFISH, a web tool that uses thermodynamics-based mathematical models for in silico evaluation of oligonucleotide probes for fluorescence in situ hybridization. Appl Environ Microbiol 77:1118–1122

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yu CP, Chu KH (2005) A quantitative assay for linking microbial community function and structure of a naphthalene-degrading microbial consortium. Environ Sci Technol 39:9611–9619

    CAS  PubMed  Google Scholar 

  • Yu C-P, Ahuja R, Sayler G, Chu K-H (2005) Quantitative molecular assay for finger printing microbial communities of wastewater and estrogen—degrading consortia. Appl Environ Microbiol 71:1433–1444

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang T, Fang HHP (2006) Applications of real-time polymerase chain reaction for quantification of microorganisms in environmental samples. Appl Microbiol Biotechnol 70:281–289

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai-Chee Loh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagarajan, K., Loh, KC. Molecular biology-based methods for quantification of bacteria in mixed culture: perspectives and limitations. Appl Microbiol Biotechnol 98, 6907–6919 (2014). https://doi.org/10.1007/s00253-014-5870-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5870-9

Keywords

Navigation