Skip to main content
Log in

BioBrickTM compatible vector system for protein expression in Rhodobacter sphaeroides

  • Methods and protocols
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

We report here the creation of a modular, plasmid-based protein expression system utilizing elements of the native Rhodobacter puf promoter in a BioBrickTM-based vector system with DsRed encoding a red fluorescent reporter protein. A suite of truncations of the puf promoter were made to assess the influence of different portions of this promoter on expression of heterologous proteins. The 3′ end of puf was found to be particularly important for increasing expression, with transformants accumulating significant quantities of DsRed under both aerobic and anaerobic growth conditions. Expression levels of this reporter protein in Rhodobacter sphaeroides were comparable to those achieved in Escherichia coli using the strong, constitutive P lac promoter, thus demonstrating the robustness of the engineered system. Furthermore, we demonstrate the ability to tune the designed expression system by modulating cellular DsRed levels based upon the promoter segment utilized and oxygenation conditions. Last, we show that the new expression system is able to drive expression of a membrane protein, proteorhodopsin, and that membrane purifications from R. sphaeroides yielded significant quantities of proteorhodopsin. This toolset lays the groundwork for the engineering of multi-step pathways, including recalcitrant membrane proteins, in R. sphaeroides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abo-Hashesh M, Desaunay N, Hallenbeck PC (2013) High yield single stage conversion of glucose to hydrogen by photofermentation with continuous cultures of Rhodobacter capsulatus JP91. Bioresour Technol 128:513–517. doi:10.1016/j.biortech.2012.10.091

    Article  PubMed  CAS  Google Scholar 

  • Adams PG, Hunter CN (2012) Adaptation of intracytoplasmic membranes to altered light intensity in Rhodobacter sphaeroides. Biochim Biophys Acta 1817(9):1616–1627. doi:10.1016/j.bbabio.2012.05.013

    Article  PubMed  CAS  Google Scholar 

  • Beja O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP, Jovanovich SB, Gates CM, Feldman RA, Spudich JL, Spudich EN, DeLong EF (2000) Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289(5486):1902–1906

    Article  PubMed  CAS  Google Scholar 

  • Canton B, Labno A, Endy D (2008) Refinement and standardization of synthetic biological parts and devices. Nat Biotechnol 26(7):787–793. doi:10.1038/nbt1413

    Article  PubMed  CAS  Google Scholar 

  • Carrier TA, Keasling JD (1999) Library of synthetic 5′ secondary structures to manipulate mRNA stability in Escherichia coli. Biotechnol Prog 15(1):58–64. doi:10.1021/bp9801143

    Article  PubMed  CAS  Google Scholar 

  • Chen DM, Han YB, Gu ZX (2006) Application of statistical methodology to the optimization of fermentative medium for carotenoids production by Rhodobacter sphaeroides. Process Biochem 41(8):1773–1778. doi:10.1016/j.procbio.2006.03.023

    Article  CAS  Google Scholar 

  • Elsen S, Jaubert M, Pignol D, Giraud E (2005) PpsR: a multifaceted regulator of photosynthesis gene expression in purple bacteria. Mol Microbiol 57(1):17–26. doi:10.1111/j.1365-2958.2005.04655.x

    Article  PubMed  CAS  Google Scholar 

  • Franchi E, Tosi C, Scolla G, Penna GD, Rodriguez F, Pedroni PM (2004) Metabolically engineered Rhodobacter sphaeroides RV strains for improved biohydrogen photoproduction combined with disposal of food wastes. Mar Biotechnol (NY) 6(6):552–565. doi:10.1007/s10126-004-1007-y

    Article  CAS  Google Scholar 

  • Gomelsky L, Moskvin OV, Stenzel RA, Jones DF, Donohue TJ, Gomelsky M (2008) Hierarchical regulation of photosynthesis gene expression by the oxygen-responsive PrrBA and AppA–PpsR systems of Rhodobacter sphaeroides. J Bacteriol 190(24):8106–8114. doi:10.1128/JB.01094-08

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gomelsky M, Kaplan S (1997) Molecular genetic analysis suggesting interactions between AppA and PpsR in regulation of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1. J Bacteriol 179(1):128–134

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gong L, Kaplan S (1996) Translational control of puf operon expression in Rhodobacter sphaeroides 2.4.1. Microbiology 142(Pt 8):2057–2069

    Article  PubMed  CAS  Google Scholar 

  • Gourdon P, Alfredsson A, Pedersen A, Malmerberg E, Nyblom M, Widell M, Berntsson R, Pinhassi J, Braiman M, Hansson O, Bonander N, Karlsson G, Neutze R (2008) Optimized in vitro and in vivo expression of proteorhodopsin: a seven-transmembrane proton pump. Protein Expr Purif 58(1):103–113. doi:10.1016/j.pep.2007.10.017

    Article  PubMed  CAS  Google Scholar 

  • Hanson DK, Mielke DL, Laible PD (2009) Harnessing Photosynthetic Bacteria for Membrane Protein Production. In: Membrane Protein Crystallization. Curr Top Membr vol 63, pp 51–82. doi:10.1016/S1063-5823(09)63003-9

  • Hoff AJ, Deisenhofer J (1997) Photophysics of photosynthesis. Structure and spectroscopy of reaction centers of purple bacteria. Phys Rep 287(1–2):1–247. doi:10.1016/S0370-1573(97)00004-5

    CAS  Google Scholar 

  • Hu Z, Zhao Z, Pan Y, Tu Y, Chen G (2010) A powerful hybrid puc operon promoter tightly regulated by both IPTG and low oxygen level. Biochemistry (Mosc) 75(4):519–2

    Article  CAS  Google Scholar 

  • Ind AC, Porter SL, Brown MT, Byles ED, de Beyer JA, Godfrey SA, Armitage JP (2009) Inducible-expression plasmid for Rhodobacter sphaeroides and Paracoccus denitrificans. Appl Environ Microbiol 75(20):6613–6615. doi:10.1128/AEM.01587-09

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Isaacs FJ, Dwyer DJ, Ding C, Pervouchine DD, Cantor CR, Collins JJ (2004) Engineered riboregulators enable post-transcriptional control of gene expression. Nat Biotechnol 22(7):841–847. doi:10.1038/nbt986

    Article  PubMed  CAS  Google Scholar 

  • Jaschke PR, Saer RG, Noll S, Beatty JT (2011) Modification of the genome of Rhodobacter sphaeroides and construction of synthetic operons. Methods Enzymol 497:519–538. doi:10.1016/B978-0-12-385075-1.00023-8

    Article  PubMed  CAS  Google Scholar 

  • Johnson ET, Baron DB, Naranjo B, Bond DR, Schmidt-Dannert C, Gralnick JA (2010) Enhancement of survival and electricity production in an engineered bacterium by light-driven proton pumping. Appl Environ Microbiol 76(13):4123–4129. doi:10.1128/AEM.02425-09

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kien NB, Kong IS, Lee MG, Kim JK (2010) Coenzyme Q10 production in a 150-l reactor by a mutant strain of Rhodobacter sphaeroides. J Ind Microbiol Biotechnol 37(5):521–529. doi:10.1007/s10295-010-0699-4

    Article  PubMed  CAS  Google Scholar 

  • Kim MS, Baek JS, Lee JK (2006) Comparison of H-2 accumulation by Rhodobacter sphaeroides KD131 and its uptake hydrogenase and PHB synthase deficient mutant. Int J Hydrogen Energ 31(1):121–127. doi:10.1016/j.ijhydene.2004.10.023

    Article  CAS  Google Scholar 

  • Kobayashi J, Yoshimune K, Komoriya T, Kohno H (2011) Efficient hydrogen production from acetate through isolated Rhodobacter sphaeroides. J Biosci Bioeng 112(6):602–605. doi:10.1016/j.jbiosc.2011.08.008

    Article  PubMed  CAS  Google Scholar 

  • Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM 2nd, Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166(1):175–176

    Article  PubMed  CAS  Google Scholar 

  • Lee SK, Chou H, Ham TS, Lee TS, Keasling JD (2008) Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr Opin Biotechnol 19(6):556–563. doi:10.1016/j.copbio.2008.10.014

    Article  PubMed  CAS  Google Scholar 

  • Mank NN, Berghoff BA, Hermanns YN, Klug G (2012) Regulation of bacterial photosynthesis genes by the small noncoding RNA PcrZ. Proc Natl Acad Sci U S A 109(40):16306–16311. doi:10.1073/pnas.1207067109

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • McKinlay JB, Harwood CS (2010) Carbon dioxide fixation as a central redox cofactor recycling mechanism in bacteria. Proc Natl Acad Sci U S A 107(26):11669–11675. doi:10.1073/pnas.1006175107

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Naylor GW, Addlesee HA, Gibson LCD, Hunter CN (1999) The photosynthesis gene cluster of Rhodobacter sphaeroides. Photosynth Res 62(2–3):121–139. doi:10.1023/A:1006350405674

    Google Scholar 

  • Niederman RA (2013) Membrane development in purple photosynthetic bacteria in response to alterations in light intensity and oxygen tension. Photosynth Res 116(2-3):333–348. doi:10.1007/s11120-013-9851-0

    Article  PubMed  CAS  Google Scholar 

  • Pfleger BF, Pitera DJ, Smolke CD, Keasling JD (2006) Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nat Biotechnol 24(8):1027–1032. doi:10.1038/nbt1226

    Article  PubMed  CAS  Google Scholar 

  • Rajasekhar N, Sasikala C, Ramana CV (1998) Photobiotransformation of indole to its value-added derivatives by Rhodobacter sphaeroides OU5. J Ind Microbiol Biotechnol 20(3–4):177–179. doi:10.1038/sj.jim.2900501

    Google Scholar 

  • Roy A, Shukla AK, Haase W, Michel H (2008) Employing Rhodobacter sphaeroides to functionally express and purify human G protein-coupled receptors. Biol Chem 389(1):69–78. doi:10.1515/BC.2008.001

    Article  PubMed  CAS  Google Scholar 

  • Salis HM, Mirsky EA, Voigt CA (2009) Automated design of synthetic ribosome binding sites to control protein expression. Nat Biotechnol 27(10):946–950. doi:10.1038/nbt.1568

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Saltikov CW, Newman DK (2003) Genetic identification of a respiratory arsenate reductase. Proc Natl Acad Sci U S A 100(19):10983–10988. doi:10.1073/pnas.1834303100

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Shetty RP, Endy D, Knight TF Jr (2008) Engineering BioBrick vectors from BioBrick parts. J Biol Eng 2:5. doi:10.1186/1754-1611-2-5

    Article  PubMed Central  PubMed  Google Scholar 

  • Sistrom WR (1960) A requirement for sodium in the growth of Rhodopseudomonas spheroides. J Gen Microbiol 22:778–785

    Article  PubMed  CAS  Google Scholar 

  • Stone KM, Voska J, Kinnebrew M, Pavlova A, Junk MJ, Han S (2013) Structural insight into proteorhodopsin oligomers. Biophys J 104(2):472–481. doi:10.1016/j.bpj.2012.11.3831

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Strack RL, Strongin DE, Bhattacharyya D, Tao W, Berman A, Broxmeyer HE, Keenan RJ, Glick BS (2008) A noncytotoxic DsRed variant for whole-cell labeling. Nat Methods 5(11):955–957. doi:10.1038/nmeth.1264

    Article  PubMed  CAS  Google Scholar 

  • Tabita FR (2004) Research on carbon dioxide fixation in photosynthetic microorganisms (1971-present). Photosynth Res 80(1–3):315–332

    Article  CAS  Google Scholar 

  • Tehrani A, Beatty JT (2004) Effects of precise deletions in Rhodobacter sphaeroides reaction center genes on steady-state levels of reaction center proteins: a revised model for reaction center assembly. Photosynth Res 79(1):101–108. doi:10.1023/B:Pres.0000011927.51349.E8

    Google Scholar 

  • Vasilyeva L, Miyake M, Nakamura C, Nakada E, Tsygankov A, Asada Y, Miyake J (1999) Expression of luciferase gene under control of the puf promoter from Rhodobacter sphaeroides. Appl Biochem Biotechnol 77(9):337–345. doi:10.1385/Abab:77:1–3:337

    Google Scholar 

  • Vick JE, Johnson ET, Choudhary S, Bloch SE, Lopez-Gallego F, Srivastava P, Tikh IB, Wawrzyn GT, Schmidt-Dannert C (2011) Optimized compatible set of BioBrick vectors for metabolic pathway engineering. Appl Microbiol Biotechnol 92(6):1275–1286. doi:10.1007/s00253-011-3633-4

    Article  PubMed  CAS  Google Scholar 

  • Yeliseev AA, Kaplan S (1999) A novel mechanism for the regulation of photosynthesis gene expression by the TspO outer membrane protein of Rhodobacter sphaeroides 2.4.1. J Biol Chem 274(30):21234–21243. doi:10.1074/jbc.274.30.21234

    Google Scholar 

  • Zhao HP, Ontiveros-Valencia A, Tang Y, Kim BO, Ilhan ZE, Krajmalnik-Brown R, Rittmann B (2013) Using a two-stage hydrogen-based membrane biofilm reactor (MBfR) to achieve complete perchlorate reduction in the presence of nitrate and sulfate. Environ Sci Technol 47(3):1565–1572. doi:10.1021/es303823n

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Anthony Dean for the use of the flow cytometer. This work was supported by the National Science Foundation Grant CBET-0756296. I.B.T. was supported by a predoctoral National Institute of Health traineeship (GM008347).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Schmidt-Dannert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 542 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tikh, I.B., Held, M. & Schmidt-Dannert, C. BioBrickTM compatible vector system for protein expression in Rhodobacter sphaeroides . Appl Microbiol Biotechnol 98, 3111–3119 (2014). https://doi.org/10.1007/s00253-014-5527-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5527-8

Keywords

Navigation