Skip to main content
Log in

Yeast: the soul of beer’s aroma—a review of flavour-active esters and higher alcohols produced by the brewing yeast

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Among the most important factors influencing beer quality is the presence of well-adjusted amounts of higher alcohols and esters. Thus, a heavy body of literature focuses on these substances and on the parameters influencing their production by the brewing yeast. Additionally, the complex metabolic pathways involved in their synthesis require special attention. More than a century of data, mainly in genetic and proteomic fields, has built up enough information to describe in detail each step in the pathway for the synthesis of higher alcohols and their esters, but there is still place for more. Higher alcohols are formed either by anabolism or catabolism (Ehrlich pathway) of amino acids. Esters are formed by enzymatic condensation of organic acids and alcohols. The current paper reviews the up-to-date knowledge in the pathways involving the synthesis of higher alcohols and esters by brewing yeasts. Fermentation parameters affecting yeast response during biosynthesis of these aromatic substances are also fully reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alvarez P, Malcorps P, Almeida AS, Ferreira A, Meyer AM, Dufour JP (1994) Analysis of free fatty-acids, fusel alcohols, and esters in beer—an alternative to Cs2 extraction. J Am Soc Brew Chem 52:127–134

    CAS  Google Scholar 

  • Anderson RG, Kirsop BH (1974) The control of volatile ester synthesis during the fermentation of wort of high specific gravity. J Inst Brew 80:48–55

    CAS  Google Scholar 

  • Anderson RG, Kirsop BH (1975a) Oxygen as a regulator of ester accumulation during the fermentation of worts of high specific gravity. J Inst Brew 81:111–115

    CAS  Google Scholar 

  • Anderson RG, Kirsop BH (1975b) Quantitative aspects of the control by oxygenation of acetate ester formation of worts of high specific gravity. J Inst Brew 81:269–301

    Google Scholar 

  • Avalos JL, Fink GR, Stephanopoulos G (2013) Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nat Biotechnol 31:335–341

    CAS  PubMed Central  PubMed  Google Scholar 

  • Äyräptää T (1971) Biosynthetic formation of higher alcohols by yeast. Dependence on the nitrogen nutrient level of the medium. J Inst Brew 77:266–276

    Google Scholar 

  • Baker CA, Morton S (1977) Oxygen levels in air-saturated worts. J Inst Brew 83:348–349

    CAS  Google Scholar 

  • Bakker BM, Bro C, Kotter P, Luttik MA, van Dijken JP, Pronk JT (2000) The mitochondrial alcohol dehydrogenase Adh3p is involved in a redox shuttle in Saccharomyces cerevisiae. J Bacteriol 182:4730–4737

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bennetzen JL, Hall BD (1982) The primary structure of the Saccharomyces cerevisiae gene for alcohol dehydrogenase. J Biol Chem 257:3018–3025

    CAS  PubMed  Google Scholar 

  • Berner TS, Arneborg N (2012) The role of lager beer yeast in oxidative stability of model beer. Lett Appl Microbiol 54:225–232

    CAS  PubMed  Google Scholar 

  • Blasco L, Vinas M, Villa TG (2011) Proteins influencing foam formation in wine and beer: the role of yeast. Int Microbiol 14:61–71

    CAS  PubMed  Google Scholar 

  • Boer VM, Tai SL, Vuralhan Z, Arifin Y, Walsh MC, Piper MD, de Winde JH, Pronk JT, Daran JM (2007) Transcriptional responses of Saccharomyces cerevisiae to preferred and nonpreferred nitrogen sources in glucose-limited chemostat cultures. FEMS Yeast Res 7:604–620

    CAS  PubMed  Google Scholar 

  • Bolat I, Romagnoli G, Zhu F, Pronk JT, Daran JM (2013) Functional analysis and transcriptional regulation of two orthologs of ARO10, encoding broad-substrate-specificity 2-oxo-acid decarboxylases, in the brewing yeast Saccharomyces pastorianus CBS1483. FEMS Yeast Res 13:505–517

    CAS  PubMed  Google Scholar 

  • Branyik T, Silva DP, Baszczynski M, Lehnert R, Silva J (2012) A review of methods of low alcohol and alcohol-free beer production. J Food Eng 108:493–506

    CAS  Google Scholar 

  • Bravi E, Perretti G, Buzzini P, Della Sera R, Fantozzi P (2009) Technological steps and yeast biomass as factors affecting the lipid content of beer during the brewing process. J Agric Food Chem 57:6279–6284

    CAS  PubMed  Google Scholar 

  • Buhligen F, Rudinger P, Fetzer I, Stahl F, Scheper T, Harms H, Muller S (2013) Sustainability of industrial yeast serial repitching practice studied by gene expression and correlation analysis. J Biotechnol 168:718–728

    PubMed  Google Scholar 

  • Calderbank J, Hammond JRM (1994) Influence of higher alcohol availability on ester formation by yeast. J Am Soc Brew Chem 52:84–90

    CAS  Google Scholar 

  • Chen E-H (1978) Relative contribution of Ehrlich and biosynthetic pathways to the formation of fusel alcohols. J Am Soc Brew Chem 36:39–43

    CAS  Google Scholar 

  • Cooper TG (2002) Transmitting the signal of excess nitrogen in Saccharomyces cerevisiae from the Tor proteins to the GATA factors: connecting the dots. FEMS Microbiol Rev 26:223–238

    CAS  PubMed  Google Scholar 

  • Dekoninck T, Verbelen PJ, Delvaux F, Van Mulders SE, Delvaux F (2012) The importance of wort composition for yeast metabolism during accelerated brewery fermentations. J Am Soc Brew Chem 70:195–204

    CAS  Google Scholar 

  • Dickinson JR, Norte V (1993) A study of branched-chain amino acid aminotransferase and isolation of mutations affecting the catabolism of branched-chain amino acids in Saccharomyces cerevisiae. FEBS Lett 326:29–32

    CAS  PubMed  Google Scholar 

  • Dickinson JR, Lanterman MM, Danner DJ, Pearson BM, Sanz P, Harrison SJ, Hewlins MJ (1997) A 13C nuclear magnetic resonance investigation of the metabolism of leucine to isoamyl alcohol in Saccharomyces cerevisiae. J Biol Chem 272:26871–26878

    CAS  PubMed  Google Scholar 

  • Dickinson JR, Harrison SJ, Hewlins MJ (1998) An investigation of the metabolism of valine to isobutyl alcohol in Saccharomyces cerevisiae. J Biol Chem 273:25751–25756

    CAS  PubMed  Google Scholar 

  • Dickinson JR, Harrison SJ, Dickinson JA, Hewlins MJ (2000) An investigation of the metabolism of isoleucine to active amyl alcohol in Saccharomyces cerevisiae. J Biol Chem 275:10937–10942

    CAS  PubMed  Google Scholar 

  • Dickinson JR, Salgado LE, Hewlins MJ (2003) The catabolism of amino acids to long chain and complex alcohols in Saccharomyces cerevisiae. J Biol Chem 278:8028–8034

    CAS  PubMed  Google Scholar 

  • Didion T, Grauslund M, Kielland-Brandt MC, Andersen HA (1996) Amino acids induce expression of BAP2, a branched-chain amino acid permease gene in Saccharomyces cerevisiae. J Bacteriol 178:2025–2029

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dufour JP (1994) Higher alcohols, acids and ester secretion during yeast growth. In: Proceedings of the 6th Jean De Clerck Chair. Academic, Leuven, pp 1–40

    Google Scholar 

  • Eden A, Simchen G, Benvenisty N (1996) Two yeast homologs of ECA39, a target for c-Myc regulation, code for cytosolic and mitochondrial branched-chain amino acid aminotransferases. J Biol Chem 271:20242–20245

    CAS  PubMed  Google Scholar 

  • Eden A, Van Nedervelde L, Drukker M, Benvenisty N, Debourg A (2001) Involvement of branched-chain amino acid aminotransferases in the production of fusel alcohols during fermentation in yeast. Appl Microbiol Biotechnol 55:296–300

    CAS  PubMed  Google Scholar 

  • Ehrlich F (1907) Über die Bedingungen der Fuselölbildung und über ihren Zusammenhang mit dem Eiweissaufbau der Hefe. Ber Dtsch Chem Ges 40:1027–1047

    CAS  Google Scholar 

  • Engan S (1970) Wort composition and beer flavour I: the influence of some amino acids on the formation of higher aliphatic alcohols and esters. J Inst Brew 76:254–261

    CAS  Google Scholar 

  • Engan S (1974) Esters in beer. J Inst Brew Dig 49:40–48

    CAS  Google Scholar 

  • Engan S (1981) Beer composition: volatile substances. In: Pollock JRA (ed) Brewing science, vol 2. Academic, London, pp 93–165

    Google Scholar 

  • Engan S and Aubert O (1977) Relations between fermentation temperature and the formation of some flavour components. In: 16th European brewery convention congress, pp 591–607, Netherlands, Amsterdam

  • Fujii T, Nagasawa N, Iwamatsu A, Bogaki T, Tamai Y, Hamachi M (1994) Molecular cloning, sequence analysis, and expression of the yeast alcohol acetyltransferase gene. Appl Environ Microbiol 60:2786–2792

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fujii T, Yoshimoto H, Nagasawa N, Bogaki T, Tamai Y, Hamachi M (1996) Nucleotide sequences of alcohol acetyltransferase genes from lager brewing yeast, Saccharomyces carlsbergensis. Yeast 12:593–598

    CAS  PubMed  Google Scholar 

  • Fujii T, Kobayashi O, Yoshimoto H, Furukawa S, Tamai Y (1997) Effect of aeration and unsaturated fatty acids on expression of the Saccharomyces cerevisiae alcohol acetyltransferase gene. Appl Environ Microbiol 63:910–915

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fujiwara D, Yoshimoto H, Sone H, Harashima S, Tamai Y (1998) Transcriptional co-regulation of Saccharomyces cerevisiae alcohol acetyltransferase gene, ATF1 and delta-9 fatty acid desaturase gene, OLE1 by unsaturated fatty acids. Yeast 14:711–721

    CAS  PubMed  Google Scholar 

  • Fujiwara D, Kobayashi O, Yoshimoto H, Harashima S, Tamai Y (1999) Molecular mechanism of the multiple regulation of the Saccharomyces cerevisiae ATF1 gene encoding alcohol acetyltransferase. Yeast 15:1183–1197

    CAS  PubMed  Google Scholar 

  • Fukuda K, Kuwahata O, Kiyokawa Y, Yanagiuchi T, Wakai Y, Kitamoto K, Inoue Y, Kimura A (1996) Molecular cloning and nucleotide sequence of the isoamyl acetate-hydrolyzing esterase gene (EST2) from Saccharomyces cerevisiae. J Ferment Bioeng 82:8–15

    CAS  Google Scholar 

  • Fukuda K, Yamamoto N, Kiyokawa Y, Yanagiuchi T, Wakai Y, Kitamoto K, Inoue Y, Kimura A (1998a) Balance of activities of alcohol acetyltransferase and esterase in Saccharomyces cerevisiae is important for production of isoamyl acetate. Appl Environ Microbiol 64:4076–4078

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fukuda K, Yamamoto N, Kiyokawa Y, Yanagiuchi T, Wakai Y, Kitamoto K, Inoue Y, Kimura A (1998b) Brewing properties of sake yeast whose EST2 gene encoding isoamyl acetate-hydrolyzing esterase was disrupted. J Ferment Bioeng 85:101–106

    CAS  Google Scholar 

  • Gibson BR, Lawrence SJ, Boulton CA, Box WG, Graham NS, Linforth RS, Smart KA (2008) The oxidative stress response of a lager brewing yeast strain during industrial propagation and fermentation. FEMS Yeast Res 8:574–585

    CAS  PubMed  Google Scholar 

  • Hiralal L, Olaniran AO, Pillay B (2013) Aroma-active ester profile of ale beer produced under different fermentation and nutritional conditions. J Biosci Bioeng 117:57–64

    PubMed  Google Scholar 

  • Hofman-Bang J (1999) Nitrogen catabolite repression in Saccharomyces cerevisiae. Mol Biotechnol 12:35–73

    CAS  PubMed  Google Scholar 

  • Hull G (2008) Olive oil addition to yeast as an alternative to wort aeration. Technol Q Master Brew Assoc Am 45:17–23

    CAS  Google Scholar 

  • Iraqui I, Vissers S, Andre B, Urrestarazu A (1999) Transcriptional induction by aromatic amino acids in Saccharomyces cerevisiae. Mol Cell Biol 19:3360–3371

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jenkins CL, Kennedy AI, Hodgson JA, Pa T, Smart KA (2003) Impact of serial repitching on lager brewing yeast quality. J Am Soc Brew Chem 61:1–9

    CAS  Google Scholar 

  • Kispal G, Steiner H, Court DA, Rolinski B, Lill R (1996) Mitochondrial and cytosolic branched-chain amino acid transaminases from yeast, homologs of the myc oncogene-regulated Eca39 protein. J Biol Chem 271:24458–24464

    CAS  PubMed  Google Scholar 

  • Knatchbull FB, Slaughter JC (1987) The effect of low CO2 pressure on the absorption of amino acids and production of flavour-active volatiles by yeast. J Inst Brew 93:420–424

    CAS  Google Scholar 

  • Kohlhaw GB (2003) Leucine biosynthesis in fungi: entering metabolism through the back door. Microbiol Mol Biol Rev 67:1–15, table of contents

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krogerus K, Gibson BR (2013) Diacetyl and its control during brewery fermentation. J Inst Brew 119:86–97

    CAS  Google Scholar 

  • Landaud S, Latrille E, Corrieu G (2001) Top pressure and temperature control the fusel alcohol/ester ratio through yeast growth in beer fermentation. J Inst Brew 107:107–117

    CAS  Google Scholar 

  • Lee K, Hahn JS (2013) Interplay of Aro80 and GATA activators in regulation of genes for catabolism of aromatic amino acids in Saccharomyces cerevisiae. Mol Microbiol 88:1120–1134

    CAS  PubMed  Google Scholar 

  • Lee K, Sung C, Kim BG, Hahn JS (2013) Activation of Aro80 transcription factor by heat-induced aromatic amino acid influx in Saccharomyces cerevisiae. Biochem Biophys Res Commun 438:43–47

    CAS  PubMed  Google Scholar 

  • Lei H, Zhao H, Yu Z, Zhao M (2012) Effects of wort gravity and nitrogen level on fermentation performance of brewer’s yeast and the formation of flavor volatiles. Appl Biochem Biotechnol 166:1562–1574

    CAS  PubMed  Google Scholar 

  • Lei H, Li H, Mo F, Zheng L, Zhao H, Zhao M (2013a) Effects of Lys and His supplementations on the regulation of nitrogen metabolism in lager yeast. Appl Microbiol Biotechnol 97:8913–8921

    CAS  PubMed  Google Scholar 

  • Lei H, Zhao H, Zhao M (2013b) Proteases supplementation to high gravity worts enhances fermentation performance of brewer’s yeast. Biochem Eng J 77:1–6

    CAS  Google Scholar 

  • Lei H, Zheng L, Wang C, Zhao H, Zhao M (2013c) Effects of worts treated with proteases on the assimilation of free amino acids and fermentation performance of lager yeast. Int J Food Microbiol 161:76–83

    CAS  PubMed  Google Scholar 

  • Libkind D, Hittinger CT, Valerio E, Goncalves C, Dover J, Johnston M, Goncalves P, Sampaio JP (2011) Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast. Proc Natl Acad Sci U S A 108:14539–14544

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lilly M, Bauer FF, Lambrechts MG, Swiegers JH, Cozzolino D, Pretorius IS (2006) The effect of increased yeast alcohol acetyltransferase and esterase activity on the flavour profiles of wine and distillates. Yeast 23:641–659

    CAS  PubMed  Google Scholar 

  • Lodolo EJ, Kock JL, Axcell BC, Brooks M (2008) The yeast Saccharomyces cerevisiae—the main character in beer brewing. FEMS Yeast Res 8:1018–1036

    CAS  PubMed  Google Scholar 

  • Ma J, Lu Q, Yuan Y, Ge H, Li K, Zhao W, Gao Y, Niu L, Teng M (2011) Crystal structure of isoamyl acetate-hydrolyzing esterase from Saccharomyces cerevisiae reveals a novel active site architecture and the basis of substrate specificity. Proteins 79:662–668

    CAS  PubMed  Google Scholar 

  • Malcorps P, Dufour JP (1992) Short-chain and medium-chain aliphatic-ester synthesis in Saccharomyces cerevisiae. Eur J Biochem 210:1015–1022

    CAS  PubMed  Google Scholar 

  • Malcorps P, Cheval JM, Jamil S, Dufour J-P (1991) A new model for the regulation of ester synthesis by alcohol acetyltransferase in Saccharomyces cerevisiae. J Am Soc Brew Chem 49:47–53

    CAS  Google Scholar 

  • Mason AB, Dufour JP (2000) Alcohol acetyltransferases and the significance of ester synthesis in yeast. Yeast 16:1287–1298

    CAS  PubMed  Google Scholar 

  • Meilgaard MC (1975a) Flavor chemistry of beer: part I: flavor interaction between principal volatiles. MBAA. Technol Q 12:107–117

    CAS  Google Scholar 

  • Meilgaard MC (1975b) Flavour chemistry of beer. Part II: flavor and threshold of 239 aroma volatiles. MBAA. Technol Q 12:151–168

    CAS  Google Scholar 

  • Meilgaard MC (1991) The flavor of beer. MBAA Technol Q 28:132–141

    Google Scholar 

  • Mojzita D, Hohmann S (2006) Pdc2 coordinates expression of the THI regulon in the yeast Saccharomyces cerevisiae. Mol Genet Genomics 276:147–161

    CAS  PubMed  Google Scholar 

  • Molina AM, Swiegers JH, Varela C, Pretorius IS, Agosin E (2007) Influence of wine fermentation temperature on the synthesis of yeast-derived volatile aroma compounds. Appl Microbiol Biotechnol 77:675–687

    CAS  PubMed  Google Scholar 

  • Montanari L, Marconi O, Mayer H, Fantozzi P (2009) Production of alcohol-free beer. In: Beer in health and disease prevention. Elsevier, Burlington, pp 61–75

    Google Scholar 

  • Moonjai N, Verstrepen KJ, Delvaux FR, Derdelinckx G, Verachtert H (2002) The effects if linoleic acid supplementation of cropped yeast on its subsequent fermentation performance and acetate ester synthesis. J Inst Brew 108:227–235

    CAS  Google Scholar 

  • Nagasawa N, Bogaki T, Iwamatsu A, Hamachi M, Kumagai C (1998) Cloning and nucleotide sequence of the alcohol acetyltransferase II gene (ATF2) from Saccharomyces cerevisiae Kyokai No. 7. Biosci Biotechnol Biochem 62:1852–1857

    CAS  PubMed  Google Scholar 

  • Neubauer O, Fromherz K (1911) Über den Abbau der Aminosäuren bei der Hefegärung. Hoppe-Seyler’s Z. Physiol Chem 70:326–350

    CAS  Google Scholar 

  • Neven H, Delvaux F, Derdelinckx G (1997) Flavor evolution of top fermented beers. MBAA Technol Q 34:115–118

    CAS  Google Scholar 

  • Nordström K (1962) Formation of ethyl acetate in fermentation with brewer’s yeast III. Participation of coenzyme A. J Inst Brew 68:398–407

    Google Scholar 

  • Nykanen L, Nykanen I (1977) Production of esters by different yeast strains in sugar fermentations. J Inst Brew 83:30–31

    CAS  Google Scholar 

  • Nykanen I, Suomalainen H (1983) Formation of aroma compounds by yeast. In: Nyaken I, Suomalainen H (eds) Aroma of beer, wine and distilled beverages. Reidel, Dordrecht, pp 3–16

    Google Scholar 

  • Nykiinen L, Nykiinen I, Suomalainen H (1977) Distribution of esters produced during sugar fermentation between the yeast cell and the medium. J Inst Brew 83:32–34

    Google Scholar 

  • Oshita K, Kubota M, Uchida Ma, and Ono M (1995) Clarification of the relationship between fusel alcohol formation and amino acid assimilation by brewing yeast using 13C-labeled amino acid. In: 25th European brewery convention congress, pp 387–402, Brussels

  • Peddie HAB (1990) Ester formation in brewery fermentations. J Inst Brew Dig 96:327–331

    CAS  Google Scholar 

  • Perpete P, Collin S (2000) Influence of beer ethanol content on the wort flavour perception. Food Chem 71:379–385

    CAS  Google Scholar 

  • Picotti P, Clement-Ziza M, Lam H, Campbell DS, Schmidt A, Deutsch EW, Rost H, Sun Z, Rinner O, Reiter L, Shen Q, Michaelson JJ, Frei A, Alberti S, Kusebauch U, Wollscheid B, Moritz RL, Beyer A, Aebersold R (2013) A complete mass-spectrometric map of the yeast proteome applied to quantitative trait analysis. Nature 494:266–270

    CAS  PubMed  Google Scholar 

  • Piddocke MP, Kreisz S, Heldt-Hansen HP, Nielsen KF, Olsson L (2009) Physiological characterization of brewer’s yeast in high-gravity beer fermentations with glucose or maltose syrups as adjuncts. Appl Microbiol Biotechnol 84:453–464

    CAS  PubMed  Google Scholar 

  • Powell CD, Diacetis AN (2007) Long term serial repitching and the genetic and phenotypic stability of brewer’s yeast. J Inst Brew 113:67–74

    CAS  Google Scholar 

  • Procopio S, Krausea D, Hofmannb T, Beckera T (2013) Significant amino acids in aroma compound profiling during yeast fermentation analyzed by PLS regression. LWT Food Sci Technol 51:423–432

    CAS  Google Scholar 

  • Ramos-Jeunehomme C, Laub R, Masschelein CA (1991) Why is ester formation in brewery fermentations yeast strain dependent? In: 23rd European brewery convention congress. Oxford University, Lisbon, pp 257–264

    Google Scholar 

  • Renger RS, Van Hateren SH, Luyben KCAM (1992) The formation of esters and higher alcohols during brewery fermentation—the effect of carbon dioxide pressure. J Inst Brew 98:509–513

    CAS  Google Scholar 

  • Rice JF, Chicoye E, Helbert JR (1977) Inhibition ofbeer volatiles formation by carbon dioxide pressure. J Am Soc Brew Chem 35:35–40

    CAS  Google Scholar 

  • Rodrigues JA, Barros AS, Carvalho B, Brandao T, Gil AM (2011) Probing beer aging chemistry by nuclear magnetic resonance and multivariate analysis. Anal Chim Acta 702:178–187

    CAS  PubMed  Google Scholar 

  • Romagnoli G, Luttik MA, Kotter P, Pronk JT, Daran JM (2012) Substrate specificity of thiamine pyrophosphate-dependent 2-oxo-acid decarboxylases in Saccharomyces cerevisiae. Appl Environ Microbiol 78:7538–7548

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rossouw D, Naes T, Bauer FF (2008) Linking gene regulation and the exo-metabolome: a comparative transcriptomics approach to identify genes that impact on the production of volatile aroma compounds in yeast. BMC Genomics 9:530

    PubMed Central  PubMed  Google Scholar 

  • Russell DW, Smith M, Williamson VM, Young ET (1983) Nucleotide sequence of the yeast alcohol dehydrogenase II gene. J Biol Chem 258:2674–2682

    CAS  PubMed  Google Scholar 

  • Saerens SM, Verstrepen KJ, Van Laere SD, Voet AR, Van Dijck P, Delvaux FR, Thevelein JM (2006) The Saccharomyces cerevisiae EHT1 and EEB1 genes encode novel enzymes with medium-chain fatty acid ethyl ester synthesis and hydrolysis capacity. J Biol Chem 281:4446–4456

    CAS  PubMed  Google Scholar 

  • Saerens SM, Delvaux F, Verstrepen KJ, Van Dijck P, Thevelein JM, Delvaux FR (2008a) Parameters affecting ethyl ester production by Saccharomyces cerevisiae during fermentation. Appl Environ Microbiol 74:454–461

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saerens SM, Verbelen PJ, Vanbeneden N, Thevelein JM, Delvaux FR (2008b) Monitoring the influence of high-gravity brewing and fermentation temperature on flavour formation by analysis of gene expression levels in brewing yeast. Appl Microbiol Biotechnol 80:1039–1051

    CAS  PubMed  Google Scholar 

  • Saison D, De Schutter DP, Uyttenhove B, Delvaux F, Delvaux FR (2009) Contribution of staling compounds to the aged flavour of lager beer by studying their flavour thresholds. Food Chem 114:1206–1215

    CAS  Google Scholar 

  • Sato M, Watari J, Ha S, Koshino S (1994) Instability in electrophoretic karyotype of brewing yeasts. J Am Soc Brew Chem 52:148–151

    CAS  Google Scholar 

  • Schoondermark-Stolk SA, Tabernero M, Chapman J, Ter Schure EG, Verrips CT, Verkleij AJ, Boonstra J (2005) Bat2p is essential in Saccharomyces cerevisiae for fusel alcohol production on the non-fermentable carbon source ethanol. FEMS Yeast Res 5:757–766

    CAS  PubMed  Google Scholar 

  • Sentheshanmuganathan S, Elsden SR (1958) The mechanism of the formation of tyrosol by Saccharomyces cerevisiae. Biochem J 69:210–218

    CAS  PubMed  Google Scholar 

  • Sentheshanuganathan S (1960) The mechanism of the formation of higher alcohols from amino acids by Saccharomyces cerevisiae. Biochem J 74:568–576

    CAS  PubMed  Google Scholar 

  • Shanta Kumara HMC, Fukui N, Kojima K, Nakatani K (1995) Regulation mechanism of ester formation by dissolved carbon dioxide during beer fermentation. MBAA Technol Q 32:159–162

    Google Scholar 

  • Shindo S, Murakani J, Koshino S (1992) Control of acetate ester formation during alcohol fermentation with immobilized yeast. J Ferment Bioeng 73:370–374

    CAS  Google Scholar 

  • Stewart G (2007) High gravity brewing- the pros and cons. New Food 1:42–46

    Google Scholar 

  • Strejc J, Siříšťová L, Karabín M, Silva J, Brányik T (2013) Production of alcohol-free beer with elevated amounts of flavouring compounds using lager yeast mutants. J Inst Brew 119:149–155

    CAS  Google Scholar 

  • Suomalainen H (1981) Yeast esterases and aroma esters in alcoholic beverages. J Inst Brew 87:296–300

    CAS  Google Scholar 

  • Taylor GT, Tburston PA, Kirsop BH (1979) lnfluence of lipids derived from malt spent grains on yeast metabolism and fermentation. J Inst Brew 85:219–227

    CAS  Google Scholar 

  • Thurston PA, Quain DE, Tuhh RS (1982) Lipid metabolism and the regulation of volatile synthesis in Saccharomyces cerevisiae. J Inst Brew 88:90–94

    CAS  Google Scholar 

  • Urrestarazu A, Vissers S, Iraqui I, Grenson M (1998) Phenylalanine- and tyrosine-auxotrophic mutants of Saccharomyces cerevisiae impaired in transamination. Mol Gen Genet 257:230–237

    CAS  PubMed  Google Scholar 

  • Vanderhaegen B, Neven H, Coghe S, Verstrepen KJ, Derdelinckx G, Verachtert H (2003) Bioflavoring and beer refermentation. Appl Microbiol Biotechnol 62:140–150

    CAS  PubMed  Google Scholar 

  • Vanderhaegen B, Neven H, Verachtert H, Derdelinckx G (2006) The chemistry of beer aging—a critical review. Food Chem 95:357–381

    CAS  Google Scholar 

  • Vasconcelles MJ, Jiang Y, McDaid K, Gilooly L, Wretzel S, Porter DL, Martin CE, Goldberg MA (2001) Identification and characterization of a low oxygen response element involved in the hypoxic induction of a family of Saccharomyces cerevisiae genes. Implications for the conservation of oxygen sensing in eukaryotes. J Biol Chem 276:14374–14384

    CAS  PubMed  Google Scholar 

  • Vaughan MA, Kurtzman CP (1985) Deoxyribonucleic acid relatedness among species of the genus Saccharomyces sensu stricto. Int J Syst Bacteriol 35:508–511

    Google Scholar 

  • Verbelen PJ, Dekoninck TM, Saerens SM, Van Mulders SE, Thevelein JM, Delvaux FR (2009) Impact of pitching rate on yeast fermentation performance and beer flavour. Appl Microbiol Biotechnol 82:155–167

    CAS  PubMed  Google Scholar 

  • Verstrepen KJ, Derdelinckx G, Dufour JP, Winderickx J, Pretorius IS, Thevelein JM, Delvaux FR (2003a) The Saccharomyces cerevisiae alcohol acetyl transferase gene ATF1 is a target of the cAMP/PKA and FGM nutrient-signalling pathways. FEMS Yeast Res 4:285–296

    CAS  PubMed  Google Scholar 

  • Verstrepen KJ, Van Laere SD, Vanderhaegen BM, Derdelinckx G, Dufour JP, Pretorius IS, Winderickx J, Thevelein JM, Delvaux FR (2003b) Expression levels of the yeast alcohol acetyltransferase genes ATF1, Lg-ATF1, and ATF2 control the formation of a broad range of volatile esters. Appl Environ Microbiol 69:5228–5237

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vieira E, Brandao T, Ferreira IM (2013) Evaluation of brewer’s spent yeast to produce flavor enhancer nucleotides: influence of serial repitching. J Agric Food Chem 61:8724–8729

    CAS  PubMed  Google Scholar 

  • Vuralhan Z, Morais MA, Tai SL, Piper MD, Pronk JT (2003) Identification and characterization of phenylpyruvate decarboxylase genes in Saccharomyces cerevisiae. Appl Environ Microbiol 69:4534–4541

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vuralhan Z, Luttik MA, Tai SL, Boer VM, Morais MA, Schipper D, Almering MJ, Kotter P, Dickinson JR, Daran JM, Pronk JT (2005) Physiological characterization of the ARO10-dependent, broad-substrate-specificity 2-oxo acid decarboxylase activity of Saccharomyces cerevisiae. Appl Environ Microbiol 71:3276–3284

    CAS  PubMed Central  PubMed  Google Scholar 

  • Williams RS, Wagner HP (1978) The isolation and identification of new staling related compounds form beer. J Am Soc Brew Chem 36:27–31

    CAS  Google Scholar 

  • Williams RS, Wagner HP (1979) Contribution of hop bitter substances to beer staling mechanisms. J Am Soc Brew Chem 37:13–19

    CAS  Google Scholar 

  • Yoshimoto H, Fujiwara D, Momma T, Ito C, Sone H, Kaneko Y, Tamai Y (1998) Characterization of the ATF1 and Lg-ATF1 genes encoding alcohol acetyltransferases in the bottom fermenting yeast Saccharomyces pastorianus. J Ferment Bioeng 86:15–20

    CAS  Google Scholar 

  • Yoshioka K, Hashimoto N (1981) Ester formation by alcohol acetyltransferase from brewers yeast. Agric Biol Chem 45:2183–2190

    CAS  Google Scholar 

  • Younis OS, Stewart GG (1998) Sugar uptake and subsequent ester and higher alcohol production by Saccharomyces cerevisiae. J Inst Brew 104:255–264

    CAS  Google Scholar 

  • Younis OS, Stewart GG (1999) The effect of malt wort, very high gravity malt wart and very high gravity adjunct wort on volatile production in Saccharomyces cerevisiae. J Am Soc Brew Chem 57:39–45

    CAS  Google Scholar 

  • Younis OS, Stewart GG (2000) The effect of wort maltose content on volatile production and fermentation performance in brewing yeast. In: Smart K (ed) Brewing yeast fermentation performance, 1st edn. Blackwell, Oxford, pp 170–176

    Google Scholar 

  • Yu Z, Zhao H, Li H, Zhang Q, Lei H, Zhao M (2012) Selection of Saccharomyces pastorianus variants with improved fermentation performance under very high gravity wort conditions. Biotechnol Lett 34:365–370

    CAS  PubMed  Google Scholar 

  • Yukiko K, Fumihiko O, Keiji M, Toshihiko A (2001) Control of higher alcohol production by manipulation of the BAP2 gene in brewing yeast. J Am Soc Brew Chem 59:157–162

    Google Scholar 

  • Zhang C, Liu Y, Qi Y, Zhang J, Dai L, Lin X, Xiao D (2013) Increased esters and decreased higher alcohols production by engineered brewer’s yeast strains. Eur Food Res Technol 236:1009–1014

    CAS  Google Scholar 

Download references

Acknowledgments

Eduardo Pires gratefully acknowledges the Fundação para a Ciência e a Tecnologia (FCT, Portugal) for the PhD fellowship support (SFRH/BD/61777/2009). The financial contributions of the EU FP7 project Ecoefficient Biodegradable Composite Advanced Packaging (EcoBioCAP, grant agreement no. 265669) as well as of the Grant Agency of the Czech Republic (project GAČR P503/12/1424) are also gratefully acknowledged. The authors thank the Ministry of Education, Youth and Sports of the Czech Republic (MSM 6046137305) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo J. Pires.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pires, E.J., Teixeira, J.A., Brányik, T. et al. Yeast: the soul of beer’s aroma—a review of flavour-active esters and higher alcohols produced by the brewing yeast. Appl Microbiol Biotechnol 98, 1937–1949 (2014). https://doi.org/10.1007/s00253-013-5470-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5470-0

Keywords

Navigation