Skip to main content
Log in

Monitoring bacterial growth using tunable resistive pulse sensing with a pore-based technique

  • Methods and protocols
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A novel bacterial growth monitoring method using a tunable resistive pulse sensor (TRPS) system is introduced in this study for accurate and sensitive measurement of cell size and cell concentration simultaneously. Two model bacterial strains, Bacillus subtilis str.168 (BSU168) and Escherichia coli str.DH5α (DH5α), were chosen for benchmarking the growth-monitoring performance of the system. Results showed that the technique of TRPS is sensitive and accurate relative to widely used methods, with a lower detection limit of cell concentration measurement of 5 × 105 cells/ml; at the same time, the mean coefficient of variation from TRPS was within 2 %. The growth of BSU168 and DH5α in liquid cultures was studied by TRPS, optical density (OD), and colony plating. Compared to OD measurement, TRPS-measured concentration correlates better with colony plating (R = 0.85 vs. R = 0.72), which is often regarded as the gold standard of cell concentration determination. General agreement was also observed by comparing TRPS-derived cell volume measurements and those determined from microscopy. We have demonstrated that TRPS is a reliable method for bacterial growth monitoring, where the study of both cell volume and cell concentration are needed to provide further details about the physical aspects of cell dynamics in real time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Begot C, Desnier I, Daudin JD, Labadie JC, Lebert A (1996) Recommendations for calculating growth parameters by optical density measurements. J Microbiol Methods 25(3):225–232

    Article  Google Scholar 

  • Booth MA, Vogel R, Curran JM, Harbison S, Travas-Sejdic J (2013) Detection of target-probe oligonucleotide hybridization using synthetic nanopore resistive pulse sensing. Biosens Bioelectron 45:136–140

    Article  CAS  PubMed  Google Scholar 

  • Brown C (1998) Coefficient of variation. Applied multivariate statistics in geohydrology and related sciences. Springer, Berlin, pp 155–157

    Book  Google Scholar 

  • Davey HM, Kell DB (1996) Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses. Microbiol Rev 60(4):641–696

    CAS  PubMed Central  PubMed  Google Scholar 

  • de Vrij J, Maas SL, van Nispen M, Sena-Esteves M, Limpens RW, Koster AJ, Leenstra S, Lamfers ML, Broekman ML (2013) Quantification of nanosized extracellular membrane vesicles with scanning ion occlusion sensing. Nanomedicine (London) 8(9):1443–1458

    Article  Google Scholar 

  • DeBlois RW, Wesley RK (1977) Sizes and concentrations of several type C oncornaviruses and bacteriophage T2 by the resistive-pulse technique. J Virol 23(2):227–233

    CAS  PubMed Central  PubMed  Google Scholar 

  • DeBlois RW, Bean CP, Wesley RKA (1977) Electrokinetic measurements with submicron particles and pores by the resistive pulse technique. J Colloid Interface Sci 61(2):323–335

    Article  CAS  Google Scholar 

  • Fraikin J-L, Teesalu T, McKenney CM, Ruoslahti E, Cleland AN (2011) A high-throughput label-free nanoparticle analyser. Nat Nanotechnol 6(5):308–313

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Armesto MR, Prieto M, Garcia-Lopez ML, Otero A, Moreno B (1993) Modern microbiological methods for foods: colony count and direct count methods. A review. Microbiologia 9(1):1–13

    CAS  PubMed  Google Scholar 

  • Garza-Licudine E, Deo D, Yu S, Uz-Zaman A, Dunbar WB (2010) Portable nanoparticle quantization using a resizable nanopore instrument—the IZON qNano. Conf Proc IEEE Eng Med Biol Soc 2010:5736–5739

    PubMed  Google Scholar 

  • Gazzola D, Van Sluyter SC, Curioni A, Waters EJ, Marangon M (2012) Roles of proteins, polysaccharides, and phenolics in haze formation in white wine via reconstitution experiments. J Agric Food Chem 60(42):10666–10673

    Article  CAS  PubMed  Google Scholar 

  • Greif D, Wesner D, Regtmeier J, Anselmetti D (2010) High resolution imaging of surface patterns of single bacterial cells. Ultramicroscopy 110(10):1290–1296

    Article  CAS  PubMed  Google Scholar 

  • Gunasekera TS, Attfield PV, Veal DA (2000) A flow cytometry method for rapid detection and enumeration of total bacteria in milk. Appl Environ Microbiol 66(3):1228–1232

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Henriques AO, Glaser P, Piggot PJ, Moran CP Jr (1998) Control of cell shape and elongation by the rodA gene in Bacillus subtilis. Mol Microbiol 28(2):235–247

    Google Scholar 

  • Katsuda T, Tsuchiya R, Kosaka N, Yoshioka Y, Takagaki K, Oki K, Takeshita F, Sakai Y, Kuroda M, Ochiya T (2013) Human adipose tissue-derived mesenchymal stem cells secrete functional neprilysin-bound exosomes. Sci Rep 3:1197

    Article  PubMed Central  PubMed  Google Scholar 

  • Kepner RL Jr, Pratt JR (1994) Use of fluorochromes for direct enumeration of total bacteria in environmental samples: past and present. Microbiol Rev 58(4):603–615

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koch AL (1968) Theory of the angular dependence of light scattered by bacteria and similar-sized biological objects. J Theor Biol 18(1):133–156

    Article  CAS  PubMed  Google Scholar 

  • Koch AL (1970) Turbidity measurements of bacterial cultures in some available commercial instruments. Anal Biochem 38(1):252–259

    Article  CAS  PubMed  Google Scholar 

  • Kubitschek HE (1990) Cell volume increase in Escherichia coli after shifts to richer media. J Bacteriol 172(1):94–101

    Google Scholar 

  • Lawrence JV, Maier S (1977) Correction for the inherent error in optical density readings. Appl Environ Microbiol 33(2):482–484

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lumley MA, Burgess R, Billingham LJ, McDonald DF, Milligan DW (1997) Colony counting is a major source of variation in CFU-GM results between centres. Br J Haematol 97(2):481–484

    Article  CAS  PubMed  Google Scholar 

  • Matlock BC, Beringer RW, Ash DL, Page AF (2011) Differences in bacterial optical density measurements between spectrophotometers. Thermo Fisher Scientific. http://www.thermoscientific.de/eThermo/CMA/PDFs/Product/productPDF_58468.PDF

  • Rolfe MD, Rice CJ, Lucchini S, Pin C, Thompson A, Cameron AD, Alston M, Stringer MF, Betts RP, Baranyi J, Peck MW, Hinton JCD (2012) Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation. J Bacteriol 194(3):686–701

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shapiro HM (2003) Practical flow cytometry. Wiley-Liss, New York

    Book  Google Scholar 

  • Vogel R, Willmott G, Kozak D, Roberts GS, Anderson W, Groenewegen L, Glossop B, Barnett A, Turner A, Trau M (2011) Quantitative sizing of nano/microparticles with a tunable elastomeric pore sensor. Anal Chem 83(9):3499–3506

    Article  CAS  PubMed  Google Scholar 

  • Volkmer B, Heinemann M (2011) Condition-dependent cell volume and concentration of Escherichia coli to facilitate data conversion for systems biology modeling. PLoS ONE 6(7):e23126

    Google Scholar 

  • Winson MK, Davey HM (2000) Flow cytometric analysis of microorganisms. Methods 21(3):231–240

    Article  CAS  PubMed  Google Scholar 

  • Wong JT (1983) Membership mutation of the genetic code: loss of fitness by tryptophan. Proc Natl Acad Sci U S A 80(20):6303–6306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by the Hong Kong RGC Collaborative Research Fund (CUHK3/CRF/11G), the Lo Kwee-Seong Biomedical Research Fund, and the Lee Hysan Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. K. Kong or Ting-Fung Chan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 4555 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, A.C.S., Loo, J.F.C., Yu, S. et al. Monitoring bacterial growth using tunable resistive pulse sensing with a pore-based technique. Appl Microbiol Biotechnol 98, 855–862 (2014). https://doi.org/10.1007/s00253-013-5377-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5377-9

Keywords

Navigation