Skip to main content
Log in

Enhanced enantioselectivity of a carboxyl esterase from Rhodobacter sphaeroides by directed evolution

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The present work created an esterase variant from Rhodobacter sphaeroides (RspE) with enhanced selectivity in hydrolytic kinetic resolutions by directed evolution. A “model” substrate, methyl mandelate, was introduced in the high-throughput screening procedure. E values of a variant CH (Asn62Cys/Leu145His) for six different esters were 10–83, which were a relative improvement compared to 2–20 for the wild type. Our subsequent crystal structure interpretation and molecular dynamics simulations helped shed light on the source of enantioselectivity modified by directed evolution. Though mutations displayed no “direct” interaction with the substrate, they were hypothesized to strengthen the intramolecular interaction in the catalytic cavity of variant. Conformation analysis revealed that the enhanced enantioselectivity of variant CH for the seven substrates applied in this study was derived from the decrease in size of the substrate binding pocket.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams PD, Grosse-Kunstleve RW, Hung LW, Ioerger TR, McCoy AJ, Moriarty NW, Read RJ, Sacchettini JC, Sauter NK, Terwilliger TC (2002) PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D: Biol Crystallogr 58:1948–1954

    Article  Google Scholar 

  • Arnold FH (2001) Combinatorial and computational challenges for biocatalyst design. Nature 409(6817):253–257. doi:10.1038/35051731

    Article  CAS  Google Scholar 

  • Bartsch S, Kourist R, Bornscheuer UT (2008) Complete inversion of enantioselectivity towards acetylated tertiary alcohols by a double mutant of a Bacillus subtilis esterase. Angew Chem Int Ed 47(8):1508–1511

    Article  Google Scholar 

  • Baumann M, Hauer BH, Bornscheuer UT (2000) Rapid screening of hydrolases for the enantioselective conversion of “difficult-to-resolve” substrates. Tetrahedron: Asymmetry 11(23):4781–4790

    Article  CAS  Google Scholar 

  • Beck G (2002) Synthesis of chiral drug substances. Synlett 6:837–850

    Article  Google Scholar 

  • Berendsen HJC, Postma JPM, Vangunsteren WF, Dinola A, Haak JR (1984) Molecular-dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690

    Article  CAS  Google Scholar 

  • Bloom JD, Arnold FH (2009) In the light of directed evolution: pathways of adaptive protein evolution. Proc Natl Acad Sci U S A 106:9995–10000

    Article  CAS  Google Scholar 

  • Brunger AT (2007) Version 1.2 of the crystallography and NMR system. Nat Protoc 2(11):2728–2733. doi:10.1038/nprot.2007.406

    Article  CAS  Google Scholar 

  • Brustad EM, Arnold FH (2011) Optimizing non-natural protein function with directed evolution. Curr Opin Chem Biol 15(2):201–210

    Article  CAS  Google Scholar 

  • Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D: Biol Crystallogr 60:2126–2132. doi:10.1107/s0907444904019158

    Article  Google Scholar 

  • Engstrom K, Nyhlen J, Sandstrom AG, Backvall JE (2010) Directed evolution of an enantioselective lipase with broad substrate scope for hydrolysis of alpha-substituted esters. J Am Chem Soc 132(20):7038–7042. doi:10.1021/Ja100593j

    Article  Google Scholar 

  • Gu JL, Liu J, Yu HW (2011) Quantitative prediction of enantioselectivity of Candida antarctica lipase B by combining docking simulations and quantitative structure–activity relationship (QSAR) analysis. J Mol Catal B Enzym 72(3–4):238–247. doi:10.1016/j.molcatb.2011.06.011

    Article  CAS  Google Scholar 

  • Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18(15):2714–2723

    Article  CAS  Google Scholar 

  • Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18(12):1463–1472

    Article  CAS  Google Scholar 

  • Ivancic M, Valinger G, Gruber K, Schwab H (2007) Inverting enantioselectivity of Burkholderia gladioli esterase EstB by directed and designed evolution. J Biotechnol 129(1):109–122

    Article  CAS  Google Scholar 

  • Langer G, Cohen SX, Lamzin VS, Perrakis A (2008) Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat Protoc 3(7):1171–1179. doi:10.1038/nprot.2008.91

    Article  CAS  Google Scholar 

  • Laskowski RA, Macarthur MW, Moss DS, Thornton JM (1993) Procheck—a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  • Liu J, Tang XL, Wang B, Yu HW, Min H (2010) Cloning, screening and characterization of ester hydrolases with enantioselectivity in typical bacteria. Process Biochem 45(4):475–480. doi:10.1016/j.procbio.2009.11.004

    Article  CAS  Google Scholar 

  • Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D: Biol Crystallogr 53:240–255

    Article  CAS  Google Scholar 

  • Nyhlen J, Martin-Matute B, Sandstrom AG, Bocola M, Backvall JE (2008) Influence of delta-functional groups on the enantiorecognition of secondary alcohols by Candida antarctica lipase B. ChemBioChem 9(12):1968–1974. doi:10.1002/cbic.200800036

    Article  CAS  Google Scholar 

  • Päiviö M, Mavrynsky D, Leino R, Kanerva LT (2011) Dynamic kinetic resolution of a wide range of secondary alcohols: cooperation of dicarbonylchlorido (pentabenzylcyclopentadienyl) ruthenium and CAL-B. Eur J Org Chem 2011(8):1452–1457

    Article  Google Scholar 

  • Perrakis A, Harkiolaki M, Wilson KS, Lamzin VS (2001) ARP/wARP and molecular replacement. Acta Crystallogr D: Biol Crystallogr 57:1445–1450

    Article  CAS  Google Scholar 

  • Petrounia IP, Arnold FH (2000) Designed evolution of enzymatic properties. Curr Opin Biotechnol 11(4):325–330

    Article  CAS  Google Scholar 

  • Puschett JB, Rao BS, Karandikar BM, Matyjaszewski K (1991) Indicator characteristics of bromothymol blue derivatives. Talanta 38(3):335–338

    Article  CAS  Google Scholar 

  • Reetz MT (2004) Changing the enantioselectivity of enzymes by directed evolution. Protein Eng 388:238–256

    Article  CAS  Google Scholar 

  • Reetz MT, Puls M, Carballeira JD, Vogel A, Jaeger KE, Eggert T, Thiel W, Bocola M, Otte N (2007) Learning from directed evolution: further lessons from theoretical investigations into cooperative mutations in lipase enantioselectivity. ChemBioChem 8(1):106–112. doi:10.1002/cbic.200600359

    Article  CAS  Google Scholar 

  • Reetz MT, Bocola M, Wang LW, Sanchis J, Cronin A, Arand M, Zou J, Archelas A, Bottalla AL, Naworyta A, Mowbray SL (2009) Directed evolution of an enantioselective epoxide hydrolase: uncovering the source of enantioselectivity at each evolutionary stage. J Am Chem Soc 131(21):7334–7343. doi:10.1021/ja809673d

    Article  CAS  Google Scholar 

  • Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409(6817):258–268

    Article  CAS  Google Scholar 

  • Schneider TR, Sheldrick GM (2002) Substructure solution with SHELXD. Acta Crystallogr D: Biol Crystallogr 58:1772–1779. doi:10.1107/s0907444902011678

    Article  Google Scholar 

  • Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64:112–122. doi:10.1107/s0108767307043930

    Article  CAS  Google Scholar 

  • Sheldrick GM (2010) Experimental phasing with SHELXC/D/E: combining chain tracing with density modification. Acta Crystallogr D: Biol Crystallogr 66:479–485. doi:10.1107/s0907444909038360

    Article  CAS  Google Scholar 

  • Torshin IY, Weber IT, Harrison RW (2002) Geometric criteria of hydrogen bonds in proteins and identification of ‘bifurcated’ hydrogen bonds. Protein Eng 15(5):359–363

    Article  CAS  Google Scholar 

  • Van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718. doi:10.1002/Jcc.20291

    Article  Google Scholar 

  • Wang B, Tang XL, Ren GF, Liu J, Yu HW (2009) A new high-throughput screening method for determining active and enantioselective hydrolases. Biochem Eng J 46(3):345–349. doi:10.1016/j.bej.2009.06.002

    Article  CAS  Google Scholar 

  • Whitesell JK, Reynolds D (1983) Resolution of chiral alcohols with mandelic-acid. J Org Chem 48(20):3548–3551

    Article  CAS  Google Scholar 

  • Wong TS, Arnold FH, Schwaneberg U (2004) Laboratory evolution of cytochrome P450BM-3 monooxygenase for organic cosolvents. Biotechnol Bioeng 85(3):351–358. doi:10.1002/Bit.10896

    Article  CAS  Google Scholar 

  • Zingg SP, Arnett EM, Mcphail AT, Bothnerby AA, Gilkerson WR (1988) Chiral discrimination in the structures and energetics of association of stereoisomeric salts of mandelic-acid with alpha-phenethylamine, ephedrine, and pseudoephedrine. J Am Chem Soc 110(5):1565–1580

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the Natural Science Foundation of China (grant no. 21176215/21176102), Outstanding Young Scholar of Zhejiang Province (grant no. R4110092) and the Program for Zhejiang Leading Team of S&T Innovation (2011R50007). We are grateful for all editor and reviewers for their helpful advice. We also thank all the other members of Prof. Yu’s group.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiahai Zhou or Hongwei Yu.

Additional information

Ma Jingbo and Wu Lian contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 370 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, J., Wu, L., Guo, F. et al. Enhanced enantioselectivity of a carboxyl esterase from Rhodobacter sphaeroides by directed evolution. Appl Microbiol Biotechnol 97, 4897–4906 (2013). https://doi.org/10.1007/s00253-012-4396-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4396-2

Keywords

Navigation