Skip to main content
Log in

Developing symbiotic consortia for lignocellulosic biofuel production

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The search for petroleum alternatives has motivated intense research into biological breakdown of lignocellulose to produce liquid fuels such as ethanol. Degradation of lignocellulose for biofuel production is a difficult process which is limited by, among other factors, the recalcitrance of lignocellulose and biological toxicity of the products. Consolidated bioprocessing has been suggested as an efficient and economical method of producing low value products from lignocellulose; however, it is not clear whether this would be accomplished more efficiently with a single organism or community of organisms. This review highlights examples of mixtures of microbes in the context of conceptual models for developing symbiotic consortia for biofuel production from lignocellulose. Engineering a symbiosis within consortia is a putative means of improving both process efficiency and stability relative to monoculture. Because microbes often interact and exist attached to surfaces, quorum sensing and biofilm formation are also discussed in terms of consortia development and stability. An engineered, symbiotic culture of multiple organisms may be a means of assembling a novel combination of metabolic capabilities that can efficiently produce biofuel from lignocellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agbogbo FK, Coward-Kelly G (2008) Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis. Biotechnol Lett 30:1515–1524. doi:10.1007/s10529-008-9728-z

    Article  CAS  Google Scholar 

  • Alper H, Stephanopoulos G (2009) Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential? Nat Rev Microbiol 7:715–723. doi:10.1038/nrmicro2186

    Article  CAS  Google Scholar 

  • Angenent LT, Wrenn BA (2008) Optimizing mixed-culture bioprocessing to convert wastes into bioenergy. In: Wall JD, Harwood CS, Demain A (eds) bioenergy. ASM, Washington, pp 179–194

    Google Scholar 

  • Atlas RM (1997) Biodiversity and microbial interactions in the biodegradation of organic compounds. In: Cloete TE, Muyima NYO (eds) Microbial community analysis: the key to the design of biological wastewater treatment systems. IWAQ, London, pp 25–34

    Google Scholar 

  • Bayer TS, Widmaier DM, Temme K, Ea M, Santi DV, Voigt CA (2009) Synthesis of methyl halides from biomass using engineered microbes. J Am Chem Soc 131:6508–6515. doi:10.1021/ja809461u

    Article  CAS  Google Scholar 

  • Bernstein HC, Paulson SD, Carlson RP (2011) Synthetic Escherichia coli consortia engineered for syntrophy demonstrate enhanced biomass productivity. J Biotechnol. doi:10.1016/j.jbiotec.2011.10.001

  • Bothast RJ, Saha BC, Flosenzier AV, Ingram LO (1994) Fermentation of L-arabinose, D-xylose and D-glucose by ethanologenic recombinant Klebsiella oxytoca strain P2. Biotechnol Lett 16:401–406

    Article  CAS  Google Scholar 

  • Brenner K, Arnold FH (2011) Self-organization, layered structure, and aggregation enhance persistence of a synthetic biofilm consortium. PLoS One 6:1–7. doi:10.1371/journal.pone.0016791

    Google Scholar 

  • Brenner K, You L, Arnold FH (2008) Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol 26:483–489. doi:10.1016/j.tibtech.2008.05.004

    Article  CAS  Google Scholar 

  • Breugelmans P, Barken KB, Tolker-Nielsen T, Hofkens J, Dejonghe W, Springael D (2008) Architecture and spatial organization in a triple-species bacterial biofilm synergistically degrading the phenylurea herbicide linuron. FEMS Microbiol Ecol 64:271–282. doi:10.1111/j.1574-6941.2008.00470.x

    Article  CAS  Google Scholar 

  • Brune A (2006) Symbiotic associations between termites and prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 439–474

    Chapter  Google Scholar 

  • Brune A, Ohkuma M (2011) Role of termite gut microbiota in symbiotic digestion. In: Bignell DE (ed) The biology of termites: a modern synthesis. Springer, Dordrecht, pp 439–479

    Google Scholar 

  • Bugg TD, Ahmad M, Hardiman EM, Singh R (2011) The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol 22:394–400. doi:10.1016/j.copbio.2010.10.009

    Article  CAS  Google Scholar 

  • Cavedon K, Canale-Parole E (1992) Physiological interactions between a mesophilic cellulolytic Clostridium and a non-cellulolytic bacterium. FEMS Microbiol Lett 86:237–245

    Article  CAS  Google Scholar 

  • Chaffron S, von Mering C (2007) Termites in the woodwork. Genome Biol 8:229–229. doi:10.1186/gb-2007-8-11-229

    Article  Google Scholar 

  • Choudhary S, Schmidt-Dannert C (2010) Applications of quorum sensing in biotechnology. Appl Microbiol Biotechnol 86:1267–1279. doi:10.1007/s00253-010-2521-7

    Article  CAS  Google Scholar 

  • Costerton JW (1995) Overview of microbial biofilms. J Ind Microbiol 15:137–140

    Article  CAS  Google Scholar 

  • Davey ME, O’toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867

    Article  CAS  Google Scholar 

  • Dien BS, Nichols NN, O’Bryan PJ, Bothast RJ (2000) Development of new ethanologenic Escherichia coli strains for fermentation of lignocellulosic biomass. Appl Biochem Biotechnol 84–86:181–196

    Article  Google Scholar 

  • Drysdale GS, Fleet GH (1989) The growth and survival of acetic acid bacteria in wines at different concentrations of oxygen. Am J Enol Vitic 40:99–105

    CAS  Google Scholar 

  • Eiteman MA, Lee SA, Altman E (2008) A co-fermentation strategy to consume sugar mixtures effectively. J Biol Eng 2:3. doi:10.1186/1754-1611-2-3

    Article  Google Scholar 

  • Feng Y, Yu Y, Wang X, Qu Y, Li D, He W, Kim BH (2011) Degradation of raw corn stover powder (RCSP) by an enriched microbial consortium and its community structure. Bioresour Technol 102:742–747. doi:10.1016/j.biortech.2010.08.074

    Article  CAS  Google Scholar 

  • Fischer CR, Klein-Marcuschamer D, Stephanopoulos G (2008) Selection and optimization of microbial hosts for biofuels production. Metab Eng 10:295–304. doi:10.1016/j.ymben.2008.06.009

    Article  CAS  Google Scholar 

  • Franzén CJ (2003) Metabolic flux analysis of RQ-controlled microaerobic ethanol production by Saccharomyces cerevisiae. Yeast 20:117–132. doi:10.1002/yea.956

    Article  Google Scholar 

  • Geng A, He Y, Qian C, Yan X, Zhou Z (2010) Effect of key factors on hydrogen production from cellulose in a co-culture of Clostridium thermocellum and Clostridium thermopalmarium. Bioresour Technol 101:4029–4033. doi:10.1016/j.biortech.2010.01.042

    Article  CAS  Google Scholar 

  • Guevara C, Zambrano MM (2006) Sugarcane cellulose utilization by a defined microbial consortium. FEMS Microbiol Lett 255:52–58. doi:10.1111/j.1574-6968.2005.00050.x

    Article  CAS  Google Scholar 

  • Gupta VK, Minocha AK, Jain N (2001) Batch and continuous studies on treatment of pulp mill wastewater by Aeromonas formicans. Chem Technol 552:547–552. doi:10.1002/jctb.417

    Google Scholar 

  • Haruta S, Cui Z, Huang Z, Li M, Ishii M, Igarashi Y (2002) Construction of a stable microbial community with high cellulose-degradation ability. Appl Microbiol Biotechnol 59:529–534. doi:10.1007/s00253-002-1026-4

    Article  CAS  Google Scholar 

  • Homma H, Shinoyama H, Nobuta Y, Terashima Y, Amachi S, Fujii T (2006) Lignin-degrading activity of edible mushroom Strobilurus ohshimae that forms fruiting bodies on buried sugi (Cryptomeria japonica) twigs. J Wood Sci 53:80–84. doi:10.1007/s10086-006-0810-7

    Article  Google Scholar 

  • Hoppe GK, Hansford GS (1984) The effect of micro-aerobic conditions on continuous ethanol production by Saccharomyces cerevisiae. Biotechnol Lett 6:681–686

    Article  CAS  Google Scholar 

  • Jayaraman A, Hallock PJ, Carson RM, Lee CC, Mansfeld FB, Wood TK (1999) Inhibiting sulfate-reducing bacteria in biofilms on steel with antimicrobial peptides generated in situ. Appl Microbiol Biotechnol 52:267–275

    Article  CAS  Google Scholar 

  • Jin M, Balan V, Gunawan C, Dale BE (2011) Consolidated bioprocessing (CBP) performance of Clostridium phytofermentans on AFEX-treated corn stover for ethanol production. Biotechnol Bioeng 108:1290–1297. doi:10.1002/bit.23059

    Article  CAS  Google Scholar 

  • Joyeux A, Lafon-Lafourcade S, Ribéreau-Gayon P (1984) Evolution of acetic acid bacteria during fermentation and storage of wine. Appl Environ Microbiol 48:153–156

    CAS  Google Scholar 

  • Kalscheuer R, Stölting T, Steinbüchel A (2006) Microdiesel: Escherichia coli engineered for fuel production. Soc General Microbiol 152:2529–2536. doi:10.1099/mic.0.29028-0

    CAS  Google Scholar 

  • Kato S, Haruta S, Cui ZJ, Ishii M, Igarashi Y (2004) Effective cellulose degradation by a mixed-culture system composed of a cellulolytic Clostridium and aerobic non-cellulolytic bacteria. FEMS Microbiol Ecol 51:133–142. doi:10.1016/j.femsec.2004.07.015

    Article  CAS  Google Scholar 

  • Kato S, Haruta S, Cui ZJ, Ishii M, Igarashi Y (2005) Stable coexistence of five bacterial strains as a cellulose-degrading community. Appl Environ Microbiol 71:7099–7099. doi:10.1128/AEM.71.11.7099

    Article  CAS  Google Scholar 

  • Kim HJ, Boedicker JQ, Choi JW, Ismagilov RF (2008) Defined spatial structure stabilizes a synthetic multispecies bacterial community. PNAS 105:18188–18193. doi:10.1073/pnas.0807935105

    Article  CAS  Google Scholar 

  • Kleerebezem R, van Loosdrecht MCM (2007) Mixed culture biotechnology for bioenergy production. Curr Opin Biotechnol 18:207–212. doi:10.1016/j.copbio.2007.05.001

    Article  CAS  Google Scholar 

  • Klitgord N, Sagré D (2010) Environments that induce synthetic microbial ecosystems. PLoS Comput Biol 6:375–401. doi:10.1371/journal.pcbi.1001002

    Article  Google Scholar 

  • la Grange DC, den Haan R, van Zyl WH (2010) Engineering cellulolytic ability into bioprocessing organisms. Appl Microbiol Biotechnol 87:1195–1208. doi:10.1007/s00253-010-2660-x

    Article  CAS  Google Scholar 

  • Lawford HG, Rousseau JD, Mohagheghi A, McMillan JD (1999) Fermentation performance characteristics of a prehydrolysate-adapted xylose-fermenting recombinant Zymomonas in batch and continuous fermentations. Appl Biochem Biotechnol 77:191–204

    Article  Google Scholar 

  • Lee J, Jayaraman A, Wood TK (2007) Indole is an inter-species biofilm signal mediated by SdiA. BMC Microbiol 7:42. doi:10.1186/1471-2180-7-42

    Article  Google Scholar 

  • Leschine SB (1995) Cellulose degradation in anaerobic environments. Annu Rev Microbiol 49:399–426

    Article  CAS  Google Scholar 

  • Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627–642. doi:10.1007/s00253-005-0229-x

    Article  CAS  Google Scholar 

  • Liu Y, Yu P, Song X, Qu Y (2008) Hydrogen production from cellulose by co-culture of Clostridium thermocellum JN4 and Thermoanaerobacterium thermosaccharolyticum GD17. Int J Hydrogen Energy 33:2927–2933. doi:10.1016/j.ijhydene.2008.04.004

    Article  CAS  Google Scholar 

  • Lu Y, Zhang YP, Lynd LR (2006) Enzyme-microbe synergy during cellulose hydrolysis by Clostridium thermocellum. PNAS 103:16165–16169

    Article  CAS  Google Scholar 

  • Lv Z, Yang J, Wang E, Yuan H (2008) Characterization of extracellular and substrate-bound cellulases from a mesophilic sugarcane bagasse-degrading microbial community. J Gen Appl Microbiol 43:1467–1472. doi:10.1016/j.procbio.2008.08.001

    CAS  Google Scholar 

  • Lynd LR (1996) Overview and evaluation of fuel ethanol from cellulosic biomass: technology, economics, the environment, and policy. Annu Rev Energy Environ 21:403–465. doi:10.1146/annurev.energy.21.1.403

    Article  Google Scholar 

  • Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Molecul Biol Rev 66:506–739. doi:10.1128/MMBR.66.3.506

    Article  CAS  Google Scholar 

  • Maki M, Leung KT, Qin W (2009) The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. Intl J Biol Sci 5:500–516

    Article  CAS  Google Scholar 

  • McCarty PL (2007) Thermodynamic electron equivalents model for bacterial yield prediction: modifications and comparative evaluations. Biotechnol Bioeng 97:377–388. doi:10.1002/bit

    Article  CAS  Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199

    Article  CAS  Google Scholar 

  • Miyazaki K, Irbis C, Takada J, Matsuura A (2008) An ability of isolated strains to efficiently cooperate in ethanolic fermentation of agricultural plant refuse under initially aerobic thermophilic conditions: oxygen deletion process appended to consolidated bioprocessing (CBP). Bioresour Technol 99:1768–1775. doi:10.1016/j.biortech.2007.03.045

    Article  CAS  Google Scholar 

  • Mohagheghi A, Evans K, Chou Y, Zhang M (2002) Cofermentation of glucose, xylose, and arabinose by genomic DNA-integrated xylose/arabinose fermenting strain of Zymomonas mobilis AX101. Appl Biochem Biotechnol 98–100:885–898

    Article  Google Scholar 

  • Moons P, Michiels CW, Aertsen A (2009) Bacterial interactions in biofilms. Crit Rev Microbiol 35:157–168. doi:10.1080/10408410902809431

    Article  CAS  Google Scholar 

  • Nakashimada Y, Srinivasan K, Murakami M, Nishio N (2000) Direct conversion of cellulose to methane by anaerobic fungus Neocallimastix frontalis and defined methanogens. Biotechnol Lett 22:223–227

    Article  CAS  Google Scholar 

  • Ohta K, Beall DS, Mejia JP, Shanmugam KT, Ingram LO (1991) Metabolic engineering of Klebsiella oxytoca M5A1 for ethanol production from xylose and glucose. Appl Environ Microbiol 57:2810–2815

    CAS  Google Scholar 

  • Okeke BC, Lu J (2011) Characterization of a defined cellulolytic and xylanolytic bacterial consortium for bioprocessing of cellulose and hemicelluloses. Appl Biochem Biotechnol 163:869–881. doi:10.1007/s12010-010-9091-0

    Article  CAS  Google Scholar 

  • Olsson L, Hahn-Hagerdal B (1996) Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microb Technol 18:312–331. doi:10.1016/0141-0229(95)00157-3

    Article  CAS  Google Scholar 

  • Paerl HW, Pinckney JL (1996) A mini-review of microbial consortia: their roles in aquatic production and biogeochemical cycling. Microb Ecol 31:225–247

    Article  Google Scholar 

  • Pavlostathis SG, Miller TL, Wolin MJ (1990) Cellulose fermentation by continuous cultures of Ruminococcus albus and Methanobrevibacter smithii. Appl Microbiol Biotechnol 33:109–116

    Article  CAS  Google Scholar 

  • Roeder J, Schink B (2009) Syntrophic degradation of cadaverine by a defined methanogenic co-culture. Appl Environ Microbiol 75:4821–4828. doi:10.1128/AEM.00342-09

    Article  CAS  Google Scholar 

  • Roos W, Luckner M (1984) Relationships between proton extrusion and fluxes of ammonium ions and organic acids in Penicillium cyclopium. J Gen Microbiol 130:1007–1014. doi:10.1099/00221287-130-4-1007

    CAS  Google Scholar 

  • Rosche B, Li XZ, Hauer B, Schmid A, Buehler K (2009) Microbial biofilms: a concept for industrial catalysis? Trends Biotechnol 27:636–643. doi:10.1016/j.tibtech.2009.08.001

    Article  CAS  Google Scholar 

  • Rouland-Lefévre C, Bignell D (2004) Cultivation of symbiotic fungi by termites of the subfamily Macrotermitinae. Symbiosis 4:731–756. doi:10.1007/0-306-48173-1_46

    Article  Google Scholar 

  • Sánchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–194. doi:10.1016/j.biotechadv.2008.11.001

    Article  Google Scholar 

  • Scharf ME, Tartar A (2008) Termite digestomes as sources for novel lignocellulases. Biofuels, Bioprod Biorefining 2:540–552. doi:10.1002/bbb

    Article  CAS  Google Scholar 

  • Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Molecul Biol Rev 61:262–262

    CAS  Google Scholar 

  • Shaw JA, Podkaminer KK, Desai SG, Bardsley JS, Rogers SR, Thorne PG, Hogsett DA, Lynd LR (2008) Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. PNAS 105:13769–13774. doi:10.1073/pnas.0801266105

    Article  CAS  Google Scholar 

  • Shin H, McClendon S, Vo T, Chen RR (2010) Escherichia coli binary culture engineered for direct fermentation of hemicellulose to a biofuel. Appl Environ Microbiol 76:8150–8159. doi:10.1128/AEM.00908-10

    Article  CAS  Google Scholar 

  • Shou W, Ram S, Vilar JMG (2007) Synthetic cooperation in engineered yeast populations. PNAS 104:1877–1882. doi:10.1073/pnas.0610575104

    Article  CAS  Google Scholar 

  • Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6:199–210. doi:10.1038/nrmicro1838

    Article  CAS  Google Scholar 

  • Szambelan K, Nowak J, Czarnecki Z (2004) Use of Zymomonas mobilis and Saccharomyces cerevisiae mixed with Kluyveromyces fragilis for improved ethanol production from Jerusalem artichoke tubers. Biotechnol Lett 26:845–848

    Article  CAS  Google Scholar 

  • Tolker-Nielsen T, Molin S (2000) Spatial organization of microbial biofilm communities. Microb Ecol 40:75–84. doi:10.1007/s002480000057

    Google Scholar 

  • Veal DA, Lynch JM (1984) Associative cellulolysis and dinitrogen fixation by co-cultures of Trichoderma harzianum and Clostridium butyricum. Nature 310:695–696

    Article  CAS  Google Scholar 

  • Vega J, Clausen E, Gaddy J (1988) Biofilm reactors for ethanol production. Enzyme Microb Technol 10:390–402. doi:10.1016/0141-0229(88)90033-6

    Article  CAS  Google Scholar 

  • Wang Z, Chen S (2009) Potential of biofilm-based biofuel production. Appl Microbiol Biotechnol 83:1–18. doi:10.1007/s00253-009-1940-9

    Article  CAS  Google Scholar 

  • Wang A, Ren N, Shi Y, Lee D (2008) Bioaugmented hydrogen production from microcrystalline cellulose using co-culture of Clostridium acetobutylicum X9 and Ethanoigenens harbinense B49. Int J Hydrog Energy 33:912–917. doi:10.1016/j.ijhydene.2007.10.017

    Article  CAS  Google Scholar 

  • Wang W, Yan L, Cui Z, Gao Y, Wang Y, Jing R (2011) Characterization of a microbial consortium capable of degrading lignocellulose. Bioresour Technol 102(19):9321–9324. doi:10.1016/j.biortech.2011.07.065

    Article  CAS  Google Scholar 

  • Warikoo V, McInerney MJ, Robinson JA, Suflita JM (1996) Interspecies acetate transfer influences the extent of anaerobic benzoate degradation by syntrophic consortia. Appl Environ Microbiol 62:26–32

    CAS  Google Scholar 

  • Warnick TA, Methé BA and Leschine SB (2002) Clostridium phytofermentans sp. nov., a cellulolytic mesophile from forest soil. Int J Syst Evol Microbiol 52:1155–1160

    Google Scholar 

  • Warnecke F, Luginühl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, Cayouette M, McHardy AC, Djordjevic G, Aboushadi N, Sorek R, Tringe SG, Podar M, Martin HG, Kunin V, Dalevi D, Madejska J, Kirton E, Platt D, Szeto E, Salamov A, Barry K, Mikhailova N, Kyrpides NC, Matson EG, Ottesen EA, Zhang X, Hernández M, Murillo C, Acosta LG, Rigoutsos I, Tamayo G, Green BD, Chang C, Rubin EM, Mathur EJ, Robertson DE, Hugenholtz P, Leadbetter JR (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565. doi:10.1038/nature06269

    Article  CAS  Google Scholar 

  • Wongwilaiwalin S, Rattanachomsri U, Laothanachareon T, Eurwilaichitr L, Igarashi Y, Champreda V (2010) Analysis of a thermophilic lignocellulose degrading microbial consortium and multi-species lignocellulolytic enzyme system. Enzyme Microb Technol 47:283–290. doi:10.1016/j.enzmictec.2010.07.013

    Article  CAS  Google Scholar 

  • Wood TK, Hong SH, Ma Q (2010) Engineering biofilm formation and dispersal. Trends Biotechnol 29:87–94. doi:10.1016/j.tibtech.2010.11.001

    Article  Google Scholar 

  • Wyman CE (1996) Ethanol production from lignocellulosic biomass: overview. In: Wyman CE (ed) Handbook on bioethanol: production and utilization. Taylor and Francis, Washington, pp 1–16

    Google Scholar 

  • Xavier JB, Picioreanu C, van Loosdrecht MCM (2005) A framework for multidimensional modelling of activity and structure of multispecies biofilms. Environ Microbiol 7:1085–1103. doi:10.1111/j.1462-2920.2005.00787.x

    Article  CAS  Google Scholar 

  • Xu L, Tschirner U (2011) Improved ethanol production from various carbohydrates through anaerobic thermophilic co-culture. Bioresour Technol 102:10065–10071. doi:10.1016/j.biortech.2011.08.067

    Article  CAS  Google Scholar 

  • Yan J, Op den Camp HJM, Jetten MSM, Hu YY, Haaijer SCM (2010) Induced cooperation between marine nitrifiers and anaerobic ammonium-oxidizing bacteria by incremental exposure to oxygen. Syst Appl Microbiol 33:407–415. doi:10.1016/j.syapm.2010.08.003

    Article  CAS  Google Scholar 

  • You L, Cox RS, Weiss R, Arnold FH (2004) Programmed population control by cell-cell communication and regulated killing. Nature 428:868–871. doi:10.1038/nature02468.1

    Article  CAS  Google Scholar 

  • Zientz E, Dandekar T, Gross R (2004) Metabolic interdependence of obligate intracellular bacteria and their insect hosts. Microbiol Molecul Biol Rev 68:745–770. doi:10.1128/MMBR.68.4.745

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank T.K. Wood at The Pennsylvania State University for his assistance in initial drafts of this work. This work was supported by the National Science Foundation Graduate Research Fellowship under Grant no. DGE-0750756. The authors also acknowledge the financial support to T.R. Zuroff from the John D. and Jeanette McWhirter Fellowship from the Pennsylvania State University Department of Chemical Engineering.

Conflicts of interest

The authors declare they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wayne R. Curtis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zuroff, T.R., Curtis, W.R. Developing symbiotic consortia for lignocellulosic biofuel production. Appl Microbiol Biotechnol 93, 1423–1435 (2012). https://doi.org/10.1007/s00253-011-3762-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3762-9

Keywords

Navigation