Skip to main content

Advertisement

Log in

Long-term field fertilization alters the diversity of autotrophic bacteria based on the ribulose-1,5-biphosphate carboxylase/oxygenase (RubisCO) large-subunit genes in paddy soil

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Carbon dioxide (CO2) assimilation by autotrophic bacteria is an important process in the soil carbon cycle with major environmental implications. The long-term impact of fertilizer on CO2 assimilation in the bacterial community of paddy soils remains poorly understood. To narrow this knowledge gap, the composition and abundance of CO2-assimilating bacteria were investigated using terminal restriction fragment length polymorphism and quantitative PCR of the cbbL gene [that encodes ribulose-1,5-biphosphate carboxylase/oxygenase (RubisCO)] in paddy soils. Soils from three stations in subtropical China were used. Each station is part of a long-term fertilization experiment with three treatments: no fertilizer (CK), chemical fertilizers (NPK), and NPK combined with rice straw (NPKM). At all of the stations, the cbbL-containing bacterial communities were dominated by facultative autotrophic bacteria such as Rhodopseudomonas palustris, Bradyrhizobium japonicum, and Ralstonia eutropha. The community composition in the fertilized soil (NPK and NPKM) was distinct from that in unfertilized soil (CK). The bacterial cbbL abundance (3–8 × 108 copies g soil−1) and RubisCO activity (0.40–1.76 nmol CO2 g soil−1 min−1) in paddy soils were significantly positively correlated, and both increased with the addition of fertilizer. Among the measured soil parameters, soil organic carbon and pH were the most significant factors influencing the community composition, abundance, and activity of the cbbL-containing bacteria. These results suggest that long-term fertilization has a strong impact on the activity and community of cbbL-containing bacterial populations in paddy soils, especially when straw is combined with chemical fertilizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alfreider A, Vogt C, Hoffman D, Babel W (2003) Diversity of ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit genes from groundwater and aquifer microorganisms. Microb Ecol 45:317–328

    Article  CAS  Google Scholar 

  • Allen SE (1989) Chemical analysis of ecological material. Blackwell, Oxford, p 386

    Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  • Bremner JM (1965) Total nitrogen. In: Black CA (ed) Methods of soil analysis, vol 2, American Society of Agronomy. Madison, WI, pp 1149–1178

    Google Scholar 

  • Cannon GC, Bradburne CE, Aldrich HC, Baker SH, Heinhorst S, Shively JM (2001) Microcompartments in prokaryotes: carboxysomes and related polyhedra. Appl Environ Microbiol 67:5351–5361

    Article  CAS  Google Scholar 

  • Chen Z, Luo XQ, Hu RG, Wu MN, Wu JS, Wei WX (2010) Impact of long-term fertilization on the composition of denitrifier communities based on nitrite reductase analyses in a paddy soil. Microb Ecol 60:850–861

    Article  CAS  Google Scholar 

  • Clark DD, Ensign SA (1999) Evidence for an inducible nucleotide-dependent acetone carboxylase in Rhodococcus rhodochrous B276. J Bacteriol 181:2752–2758

    CAS  Google Scholar 

  • Colwell JD (1963) The estimation of phosphorus fertilizer requirements of wheat in southern New South Wales by soil analysis. Aust J Exp Agric Anim Husb 3:190–197

    Article  CAS  Google Scholar 

  • Conrad R, Klose M, Noll M (2009) Functional and structural response of the methanogenic microbial community in rice field soil to temperature change. Environ Microbiol 11:1844–1853

    Article  CAS  Google Scholar 

  • Dong Z, Layzell DB (2001) H2 oxidation, O2 uptake and CO2 fixation in hydrogen treated soils. Plant Soil 229:1–12

    Article  CAS  Google Scholar 

  • Elsaied H, Naganuma T (2001) Phylogenetic diversity of ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes from deep-sea microorganisms. Appl Environ Microbiol 67:1751–1765

    Article  CAS  Google Scholar 

  • Ensign SA, Small FJ, Allen JR, Sluis MK (1998) New roles for CO2 in the microbial metabolism of aliphatic epoxides and ketones. Arch Microbiol 169:179–187

    Article  CAS  Google Scholar 

  • Ezaki S, Maeda N, Kishimoto T, Atomi H, Imanaka T (1999) Presence of a structurally novel type ribulose bisphosphate carboxylase/oxygenase in the hyperthermophilic archaeon, Pyrococcus kodakaraensis KOD1. J Biol Chem 274:5078–5082

    Article  CAS  Google Scholar 

  • Ferreyra RG, Soncini FC, Viale AM (1993) Cloning, characterization, and functional expression in Escherichia coli of chaperonin (groESL) genes from the phototrophic sulfur bacterium Chromatium vinosum. J Bacteriol 175:1514–1523

    CAS  Google Scholar 

  • Franzluebbers AJ (2010) Achieving soil organic carbon sequestration with conservation agricultural systems in the southeastern United States. Soil Sci Soc Am J 74:347–357

    Article  CAS  Google Scholar 

  • Keeney DR, Nelson DW (1982) Nitrogen inorganic forms. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis. Agronomy monograph 9 part 2, 2nd edn. American Society of Agronomy, Madison, pp 643–698

    Google Scholar 

  • Knudsen D, Peterson GA, Pratt PF (1982) Lithium, sodium, and potassium. In: Page AL, Miller RH, Keeny DR (eds) Methods of soil analysis. Part 2. Chemical and microbiological properties, 2nd edn. Agronomy No. 9. American Society of Agronomy, Madison, pp 225–246

    Google Scholar 

  • Kögel-Knabner I, Amelung W, Cao Z, Fiedler S, Frenzel P, Jahn R, Kalbitz K, Kölbl A, Schloter M (2010) Biogeochemistry of paddy soils. Geoderma 157:1–14

    Article  Google Scholar 

  • Kolb S, Knief C, Stubner S, Conrad R (2003) Quantitative detection of methanotrophs in soil by novel pmoA-targeted real-time PCR assays. Appl Environ Microbiol 69:2423–2429

    Article  CAS  Google Scholar 

  • Kurakake M, Onoue T, Komaki T (1996) Effect of pH on transfructosylation and hydrolysis by β-fructofuranosidase from Aspergillus oryzae. Appl Microbiol Biotechnol 45:236–239

    Article  CAS  Google Scholar 

  • Lacis AA, Schmidt GA, Rind D, Ruedy RA (2010) Atmospheric CO2: principal control knob governing earth’s temperature. Science 330:356–359

    Article  CAS  Google Scholar 

  • Lal R (2004) Offsetting China's CO2 emissions by soil carbon sequestration. Clim Chang 65:263–275

    Article  CAS  Google Scholar 

  • Lukow T, Dunfield PF, Liesack W (2000) Use of the T-RFLP technique to assess spatial and temporal changes in the bacterial community structure with in an agricultural soil planted with transgenic and no transgenic potato plants. FEMS Microbiol Ecol 32:241–247

    Article  CAS  Google Scholar 

  • Meeks JC, Elhai J (2002) Regulation of cellular differentiation in filamentous cyanobacteria in free-living and plant-associated symbiotic growth states. Microbiol Mol Biol Rev 66:94–121

    Article  CAS  Google Scholar 

  • Nanba K, King GM, Dunfield K (2004) Analysis of facultative lithotrophic distribution and diversity on volcanic deposits by use of the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Appl Environ Microbiol 70:2245–2253

    Article  CAS  Google Scholar 

  • Nelson DW, Sommers LE (1982) Total carbon, organic carbon and organic matter. In: Page AL, Miller RH, Keeny DR (eds) Methods of soil analysis. Part 2, 2nd edn. American Society of Agronomy, Madison, pp 539–577

    Google Scholar 

  • Olsen SR, Somers LE (1982) Phosphorus. In: Page AL, Miller RH, Keene DR (eds) Methods of soil analysis, vol 2. Soil Science Society of America, Madison, pp 403–448

    Google Scholar 

  • Paul J, Alfreider A, Wawrik B (2000) Micro- and macrodiversity in rbcL sequences in ambient phytoplankton populations from the southeastern Gulf of Mexico. Mar Ecol Prog Ser 198:9–18

    Article  CAS  Google Scholar 

  • Perez RC, Matin A (1982) Carbon dioxide assimilation by Thiobacillus novellus under nutrient-limited mixotrophic conditions. J Bacteriol 150:46–51

    CAS  Google Scholar 

  • Porteous LA, Armstrong JL, Seidler RJ, Watrud LS (1994) An effective method to extract DNA from environmental samples for polymerase chain-reaction amplification and DNA fingerprint analysis. Curr Microbiol 29:301–307

    Article  CAS  Google Scholar 

  • Selesi D, Schmid M, Hartmann A (2005) Diversity of green-like and red-like ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes (cbbL) in differently managed agricultural soils. Appl Environ Microbiol 71:175–184

    Article  CAS  Google Scholar 

  • Selesi D, Pattis I, Schmid M, Kandeler E, Hartmann A (2007) Quantification of bacterial RubisCO genes in soils by cbbL targeted real-time PCR. J Microbiol Methods 69:497–503

    Article  CAS  Google Scholar 

  • Shaharoona B, Naveed M, Arshad M, Zahir ZA (2008) Fertilizer-dependent efficiency of Pseudomonads for improving growth, yield, and nutrient use efficiency of wheat (Triticum aestivum L.). Appl Microbiol Biotechnol 79:147–155

    Article  CAS  Google Scholar 

  • Shively JM, Devore W, Stratford L, Porter L, Medlin L, Stevens SE (1986) Molecular evolution of the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisCO). FEMS Microbiol Lett 37:251–257

    Article  CAS  Google Scholar 

  • Sombrero A, Benito A (2010) Carbon accumulation in soil. Ten-year study of conservation tillage and crop rotation in a semi-arid area of Castile-Leon, Spain. Soil Til Res 107:64–70

    Article  Google Scholar 

  • Sonntag K, Schwinde J, Graaf AA, Marx A, Eikmanns BJ, Wiechert W, Sahm H (1995) 13 C NMR studies of the fluxes in the central metabolism of Corynebacterium glutamicum during growth and overproduction of amino acids in batch cultures. Appl Microbiol Biotechnol 44:489–495

    Article  CAS  Google Scholar 

  • Stein S, Selesi D, Schilling R, Pattis I, Schmid M, Hartmann A (2005) Microbial activity and bacterial composition of H2-treated soils with net CO2 fixation. Soil Biol Biochem 37:1938–1945

    Article  CAS  Google Scholar 

  • Tabita FR (1988) Molecular and cellular regulation of autotrophic carbon fixation in microorganisms. Microbiol Rev 52:155–189

    CAS  Google Scholar 

  • Tabita FR (1999) Microbial ribulose-1,5-bisphosphate carboxylase/oxygenase: a different perspective. Photosynth Rev 60:1–28

    Article  CAS  Google Scholar 

  • Takai K, Campbell BJ, Cary SC, Suzuki M, Oida H, Nunoura T, Hirayama H, Nakagawa S, Suzuki Y, Inagaki F, Horikoshi K (2005) Enzymatic and genetic characterization of carbon and energy metabolisms by deep-sea hydrothermal chemolithoautotrophic isolates of Epsilonproteobacteria. Appl Environ Microbiol 71:7310–7320

    Article  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol Evol 24:1596–1599

    Article  CAS  Google Scholar 

  • Tolli J, King GM (2005) Diversity and structure of bacterial chemolithotrophic communities in pine forest and agroecosystem soils. Appl Environ Microbiol 71:8411–8418

    Article  CAS  Google Scholar 

  • Watson GM, Tabita FR (1997) Microbial ribulose-1,5-bisphosphate carboxylase/oxygenase: a molecule for phylogenetic and enzymological investigation. FEMS Microbiol Lett 146:13–22

    Article  CAS  Google Scholar 

  • Weber C, Farwick A, Benisch F, Brat D, Dietz H, Subtil T, Boles E (2010) Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Appl Microbiol Biotechnol 87:1303–1315

    Article  CAS  Google Scholar 

  • Wu J (2011) Carbon accumulation in paddy ecosystems in subtropical China: evidence from landscape studies. Eur J Soil Sci 62:29–34

    Article  CAS  Google Scholar 

  • Xu HH, Tabita FR (1996) Ribulose-1,5-bisphosphate carboxylase/oxygenase gene expression and diversity of Lake Erie planktonic microorganisms. Appl Environ Microbiol 62:1913–1921

    CAS  Google Scholar 

  • Yang ZH, Xiao Y, Zeng GM, Xu ZY, Liu YS (2007) Comparison of methods for total community DNA extraction and purification from compost. Appl Microbiol Biotechnol 74:918–925

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by funds from the Chinese Academy of Sciences (grant no. KZCX2-YW-T07), the National Natural Science Foundation of China (grant no. 41090283, 40901124), and the Knowledge Innovation Program of the Chinese Academy of Sciences (grant no. ISACX-LYQY-QN-1103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinshui Wu.

Additional information

Hongzhao Yuan and Tida Ge contributed equally to this work as co-first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, H., Ge, T., Wu, X. et al. Long-term field fertilization alters the diversity of autotrophic bacteria based on the ribulose-1,5-biphosphate carboxylase/oxygenase (RubisCO) large-subunit genes in paddy soil. Appl Microbiol Biotechnol 95, 1061–1071 (2012). https://doi.org/10.1007/s00253-011-3760-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3760-y

Keywords

Navigation