Skip to main content
Log in

Shuttling happens: soluble flavin mediators of extracellular electron transfer in Shewanella

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The genus Shewanella contains Gram negative γ-proteobacteria capable of reducing a wide range of substrates, including insoluble metals and carbon electrodes. The utilization of insoluble respiratory substrates by bacteria requires a strategy that is quite different from a traditional respiratory strategy because the cell cannot take up the substrate. Electrons generated by cellular metabolism instead must be transported outside the cell, and perhaps beyond, in order to reduce an insoluble substrate. The primary focus of research in model organisms such as Shewanella has been the mechanisms underlying respiration of insoluble substrates. Electrons travel from the menaquinone pool in the cytoplasmic membrane to the surface of the bacterial cell through a series of proteins collectively described as the Mtr pathway. This review will focus on respiratory electron transfer from the surface of the bacterial cell to extracellular substrates. Shewanella sp. secrete redox-active flavin compounds able to transfer electrons between the cell surface and substrate in a cyclic fashion—a process termed electron shuttling. The production and secretion of flavins as well as the mechanisms of cell-mediated reduction will be discussed with emphasis on the experimental evidence for a shuttle-based mechanism. The ability to reduce extracellular substrates has sparked interest in using Shewanella sp. for applications in bioremediation, bioenergy, and synthetic biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbas CA, Sibirny AA (2011) Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers. Microbiol Mol Biol Rev 75:321–360

    Article  CAS  Google Scholar 

  • Albert, A. (1950) The metal-binding properties of riboflavin. Biochem J 47(3):xxvii

  • Baron D, LaBelle E, Coursolle D, Gralnick JA, Bond DR (2009) Electrochemical measurement of electron transfer kinetics by Shewanella oneidensis MR-1. J Biol Chem 284:28865–28873

    Article  CAS  Google Scholar 

  • Beliaev AS, Saffarini DA (1998) Shewanella putrefaciens mtrB encodes an outer membrane protein required for Fe(III) and Mn(IV) reduction. J Bacteriol 180:6292–6297

    CAS  Google Scholar 

  • Beliaev AS, Saffarini DA, McLaughlin JL, Hunnicutt D (2001) MtrC, an outer membrane decahaem c cytochrome required for metal reduction in Shewanella putrefaciens MR-1. Mol Microbiol 39:722–730

    Article  CAS  Google Scholar 

  • Biffinger JC, Pietron J, Ray R, Little B, Ringeisen BR (2007) A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathodes. Biosens Bioelectron 22:1672–1679

    Article  CAS  Google Scholar 

  • Bond DR, Lovley DR (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69:1548–1555

    Article  CAS  Google Scholar 

  • Bond DR, Holmes DE, Tender LM, Lovley DR (2002) Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295:483–485

    Article  CAS  Google Scholar 

  • Bretschger O, Obraztsova A, Sturm CA, Chang IS, Gorby YA, Reed SB, Culley DE, Reardon CL, Barua S, Romine MF, Zhou J, Beliaev AS, Bouhenni R, Saffarini D, Mansfeld F, Kim BH, Fredrickson JK, Nealson KH (2007) Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants. Appl Environ Microbiol 73:7003–7012

    Article  CAS  Google Scholar 

  • Bücking C, Popp F, Kerzenmacher S, Gescher J (2010) Involvement and specificity of Shewanella oneidensis outer membrane cytochromes in the reduction of soluble and solid-phase terminal electron acceptors. FEMS Microbiol Lett 306:144–151

    Article  Google Scholar 

  • Clarke TA, Edwards MJ, Gates AJ, Hall A, White GF, Bradley J, Reardon CL, Shi L, Beliaev AS, Marshall MJ, Wang Z, Watmough NJ, Fredrickson JK, Zachara JM, Butt JN, Richardson DJ (2011) Structure of a bacterial cell surface decaheme electron conduit. Proc Natl Acad Sci USA 108:9384–9389

    Article  CAS  Google Scholar 

  • Coursolle D, Gralnick JA (2010) Modularity of the Mtr respiratory pathway of Shewanella oneidensis strain MR-1. Mol Microbiol 77:995–1008

    CAS  Google Scholar 

  • Coursolle D, Baron DB, Bond DR, Gralnick JA (2010) The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis. J Bacteriol 192:467–474

    Article  CAS  Google Scholar 

  • Covington ED, Gelbmann CB, Kotloski NJ, Gralnick JA (2010) An essential role for UshA in processing of extracellular flavin electron shuttles by Shewanella oneidensis. Mol Microbiol 78:519–532

    Article  CAS  Google Scholar 

  • Furia T (1972) CRC handbook of food additives. CRC Press, Boca Raton, Fl

    Google Scholar 

  • Gralnick JA, Newman DK (2007) Extracellular respiration. Mol Microbiol 65:1–11

    Article  Google Scholar 

  • Hartshorne RS, Reardon CL, Ross D, Nuester J, Clarke TA, Gates AJ, Mills PC, Fredrickson JK, Zachara JM, Shi L, Beliaev AS, Marshall MJ, Tien M, Brantley S, Butt JN, Richardson DJ (2009) Characterization of an electron conduit between bacteria and the extracellular environment. Proc Natl Acad Sci USA 106:22169–22174

    Article  CAS  Google Scholar 

  • Hau HH, Gralnick JA (2007) Ecology and biotechnology of the genus Shewanella. Annu Rev Microbiol 61:237–258

    Article  CAS  Google Scholar 

  • Hernandez ME (2004) Mechanisms of indirect mineral reduction by bacteria. PhD Dissertation, California Institute of Technology

    Google Scholar 

  • Hernandez ME, Newman DK (2001) Extracellular electron transfer. Cell Mol Life Sci 58:1562–1571

    Article  CAS  Google Scholar 

  • Hernandez ME, Kappler A, Newman DK (2004) Phenazines and other redox-active antibiotics promote microbial mineral reduction. Appl Environ Microbiol 70:921–928

    Article  CAS  Google Scholar 

  • Hubbard TJ, Ailey B, Brenner SE, Murzin AG, Chothia C (1999) SCOP: a structural classification of proteins database. Nucleic Acids Res 27:254–256

    Article  CAS  Google Scholar 

  • Hunt KA, Flynn JM, Naranjo B, Shikhare ID, Gralnick JA (2010) Substrate-level phosphorylation is the primary source of energy conservation during anaerobic respiration of Shewanella oneidensis strain MR-1. J Bacteriol 192:3345–3351

    Article  CAS  Google Scholar 

  • Jensen HM, Albers AE, Malley KR, Londer YY, Cohen BE, Helms BA, Weigele P, Groves JT, Ajo-Franklin CM (2010) Engineering of a synthetic electron conduit in living cells. Proc Natl Acad Sci USA 107:19213–19218

    Article  CAS  Google Scholar 

  • Jiang X, Hu J, Fitzgerald LA, Biffinger JC, Xie P, Ringeisen BR, Lieber CM (2010) Probing electron transfer mechanisms in Shewanella oneidensis MR-1 using a nanoelectrode platform and single-cell imaging. Proc Natl Acad Sci USA 107:16806–16810

    Article  CAS  Google Scholar 

  • Leys D, Tsapin AS, Nealson KH, Meyer TE, Cusanovich MA, Van Beeumen JJ (1999) Structure and mechanism of the flavocytochrome c fumarate reductase of Shewanella putrefaciens MR-1. Nat Struct Biol 6:1113–1117

    Article  CAS  Google Scholar 

  • Lies DP, Hernandez ME, Kappler A, Mielke RE, Gralnick JA, Newman DK (2005) Shewanella oneidensis MR-1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for biofilms. Appl Environ Microbiol 71:4414–4426

    Article  CAS  Google Scholar 

  • Lovley DR (2008) The microbe electric: conversion of organic matter to electricity. Curr Opin Biotechnol 19:564–571

    Article  CAS  Google Scholar 

  • Lovley D, Coates J, Blunt-Harris E, Phillips E, Woodward J (1996) Humic substances as electron acceptors for microbial respiration. Nature 382:445–448

    Article  CAS  Google Scholar 

  • Lovley DR, Holmes DE, Nevin KP (2004) Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol 49:219–286

    Article  CAS  Google Scholar 

  • Lower SK, Hochella MF, Beveridge TJ (2001) Bacterial recognition of mineral surfaces: nanoscale interactions between Shewanella and alpha-FeOOH. Science 292:1360–1363

    Article  CAS  Google Scholar 

  • Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR (2008) Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci USA 105:3968–3973

    Article  CAS  Google Scholar 

  • Myers CR, Myers JM (2004) Shewanella oneidensis MR-1 restores menaquinone synthesis to a menaquinone-negative mutant. Appl Environ Microbiol 70:5415–5425

    Article  CAS  Google Scholar 

  • Myers CR, Nealson KH (1988) Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240:1319–1321

    Article  CAS  Google Scholar 

  • Nealson K, Scott J (2006) The prokayotes. Springer Science, New York

    Google Scholar 

  • Nevin KP, Lovley DR (2000) Lack of production of electron-shuttling compounds or solubilization of Fe(III) during reduction of insoluble Fe(III) oxide by Geobacter metallireducens. Appl Environ Microbiol 66:2248–2251

    Article  CAS  Google Scholar 

  • Nevin KP, Lovley DR (2002) Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans. Appl Environ Microbiol 68:2294–2299

    Article  CAS  Google Scholar 

  • Newman DK, Kolter R (2000) A role for excreted quinones in extracellular electron transfer. Nature 405:94–97

    Article  CAS  Google Scholar 

  • Rabaey K, Rozendal RA (2010) Microbial electrosynthesis—revisiting the electrical route for microbial production. Nat Rev Microbiol 8:706–716

    Article  CAS  Google Scholar 

  • Ringeisen BR, Henderson E, Wu PK, Pietron J, Ray R, Little B, Biffinger JC, Jones-Meehan JM (2006) High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ Sci Technol 40:2629–2634

    Article  CAS  Google Scholar 

  • Ross DE, Brantley SL, Tien M (2009) Kinetic characterization of OmcA and MtrC, terminal reductases involved in respiratory electron transfer for dissimilatory iron reduction in Shewanella oneidensis MR-1. Appl Environ Microbiol 75:5218–5226

    Article  CAS  Google Scholar 

  • Ross, D. E., J. M. Flynn, D. B. Baron, J. A. Gralnick & D. R. Bond (2011) Towards electrosynthesis in Shewanella: energetics of reversing the Mtr pathway for reductive metabolism. PLoS One, 6, e16649.

  • Shi L, Squier TC, Zachara JM, Fredrickson JK (2007) Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes. Mol Microbiol 65:12–20

    Article  CAS  Google Scholar 

  • Srikanth S, Marsili E, Flickinger MC, Bond DR (2008) Electrochemical characterization of Geobacter sulfurreducens cells immobilized on graphite paper electrodes. Biotechnol Bioeng 99:1065–1073

    Article  CAS  Google Scholar 

  • Stams AJ, de Bok FA, Plugge CM, van Eekert MH, Dolfing J, Schraa G (2006) Exocellular electron transfer in anaerobic microbial communities. Environ Microbiol 8:371–382

    Article  CAS  Google Scholar 

  • Straub KL, Schink B (2004) Ferrihydrite-dependent growth of Sulfurospirillum deleyianum through electron transfer via sulfur cycling. Appl Environ Microbiol 70:5744–5749

    Article  CAS  Google Scholar 

  • Vitreschak AG, Rodionov DA, Mironov AA, Gelfand MS (2002) Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation. Nucleic Acids Res 30:3141–3151

    Article  CAS  Google Scholar 

  • von Canstein H, Ogawa J, Shimizu S, Lloyd JR (2008) Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl Environ Microbiol 74:615–623

    Article  Google Scholar 

  • Wang Y, Kern SE, Newman DK (2010) Endogenous phenazine antibiotics promote anaerobic survival of Pseudomonas aeruginosa via extracellular electron transfer. J Bacteriol 192:365–369

    Article  CAS  Google Scholar 

  • Winkler WC, Cohen-Chalamish S, Breaker RR (2002) An mRNA structure that controls gene expression by binding FMN. Proc Natl Acad Sci USA 99:15908–15913

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank D. Richardson (University of East Anglia), Z. Summers (University of Minnesota), D. Newman (Caltech), L. Bird (Caltech), and one anonymous reviewer for helpful comments on this manuscript. This work was funded by the Office of Naval Research (award N000140810166 to JAG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey A. Gralnick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brutinel, E.D., Gralnick, J.A. Shuttling happens: soluble flavin mediators of extracellular electron transfer in Shewanella . Appl Microbiol Biotechnol 93, 41–48 (2012). https://doi.org/10.1007/s00253-011-3653-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3653-0

Keywords

Navigation