Skip to main content

Advertisement

Log in

Enhanced performance and mechanism study of microbial electrolysis cells using Fe nanoparticle-decorated anodes

Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Anode properties are critical for the performance of microbial electrolysis cells (MECs). In the present study, Fe nanoparticle-modified graphite disks were used as anodes to investigate the effects of nanoparticles on the performance of Shewanella oneidensis MR-1 in MECs. Results demonstrated that the average current densities produced with Fe nanoparticle-decorated anodes up to 5.89-fold higher than plain graphite anodes. Whole genome microarray analysis of the gene expression showed that genes encoding biofilm formation were significantly up-regulated as a response to nanoparticle-decorated anodes. Increased expression of genes related to nanowires, flavins, and c-type cytochromes indicates that enhanced mechanisms of electron transfer to the anode may also have contributed to the observed increases in current density. The majority of the remaining differentially expressed genes associated with electron transport and anaerobic metabolism demonstrate a systemic response to increased power loads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bao SJ, Li CM, Zang JF, Cui XQ, Qiao Y, Guo J (2008) Novel nanoporous TiO2 electrode for direct electrochemistry of glucose oxidase. Adv Funct Mater 18(4):591–599

    Article  CAS  Google Scholar 

  • Beliaev AS, Saffarini DA, McLaughlin JL, Hunnicutt D (2001) MtrC, an outer membrane decahaem c cytochrome required for metal reduction in Shewanella putrefaciens MR-1. Mol Microbiol 39:722–730

    Article  CAS  Google Scholar 

  • Bencheikh-Latmani R, Williams SM, Haucke L, Criddle CS, Wu L, Criddle CS, Zhou J, Tebo BM (2005) Global transcriptional profiling of Shewanella oneidensis MR-1 during Cr(VI) and U(VI) reduction. Appl Environ Microbiol 71:7453–7460

    Article  CAS  Google Scholar 

  • Biffinger JC, Pietron J, Ray R, Little B, Ringeisen BR (2007) A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathodes. Biosens Bioelectron 22:1672–1679

    Article  CAS  Google Scholar 

  • Bretschger O, Obraztsova A, Sturm CA, Chang IS, Gorby YA, Reed SB, Culley DE, Reardon CL, Barua S, Romine MF, Zhou J, Beliaev AS, Bouhenni R, Saffarini D, Mansfeld F, Kim BH, Fredrickson JK, Nealson KH (2007) Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants. Appl Environ Microbiol 73:7003–7012

    Article  CAS  Google Scholar 

  • Brown SD, Thompson MR, Verberkmoes NC, Chourey K, Shah M, Zhou J, Hettich RL, Thompson DK (2006) Molecular dynamics of the Shewanella oneidensis response to chromate stress. Mol Cell Proteomics 5:1054–1071

    Article  CAS  Google Scholar 

  • Cao X, Huang X, Liang P, Xiao K, Zhou Y, Zhang X, Logan BE (2009) A new method for water desalination using microbial desalination cells. Environ Sci Technol 43(18):7148–7152

    Article  CAS  Google Scholar 

  • Fan Y, Xu S, Schaller R, Jiao J, Chaplen F, Fern A, Liu H (2011) Nanoparticle decorated anodes for enhanced current generation in microbial electrochemical cell. Biosens Bioelectron 26(5):1908–1912

    Article  CAS  Google Scholar 

  • Gao H, Wang Y, Liu X, Yan T, Wu L, Alm E, Arkin A, Thompson DK, Zhou J (2004) Global transcriptome analysis of the heat shock response of Shewanella oneidensis. J Bacteriol 186:7796–7803

    Article  CAS  Google Scholar 

  • Gao H, Yang ZK, Wu L, Thompson DK, Zhou J (2006) Global transcriptome analysis of the cold shock response of Shewanella oneidensis MR-1 and mutational analysis of its classical cold shock proteins. J Bacteriol 188:4560–4569

    Article  CAS  Google Scholar 

  • Gorby YA, Yanina S, Mclean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS, Culley DE, Reed SB, Romine MF, Saffarini DA, Hill EA, Shi L, Elias DA, Kennedy DW, Pinchuk G, Watanabe K, Ishii S, Logan B, Nealson KH, Fredrickson JK (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci USA 103:11358–11363

    Article  CAS  Google Scholar 

  • Konstantinidis KT, Serres MH, Romine MF, Rodrigues JL, Auchtung J, McCue LA, Lipton MS, Obraztsova A, Giometti CS, Nealson KH, Fredrickson JK, Tiedje JM (2009) Comparative systems biology across an evolutionary gradient within the Shewanella genus. Proc Natl Acad Sci U S A 106(37):15909–15914

    Article  CAS  Google Scholar 

  • Liu WT (2006) Nanoparticles and their biological and environmental applications. J Biosci Bioeng 102:1–7

    Article  CAS  Google Scholar 

  • Liu H, Grot S, Logan BE (2005) Electrochemically assisted microbial production of hydrogen from a fermentation end product. Environ Sci Technol 39:4317–4320

    Article  CAS  Google Scholar 

  • Logan BE (2008) Microbial fuel cells. Wiley, New Jersey

    Google Scholar 

  • Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 5:375–381

    Article  Google Scholar 

  • Logan BE, Hamelers B, Rozendal R, Schroder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40(17):5181–5192

    Article  CAS  Google Scholar 

  • Logan B, Cheng S, Watson V, Estadt G (2007) Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ Sci Technol 41(9):3341–3346

    Article  CAS  Google Scholar 

  • Logan BE, Call D, Cheng S, Hamelers HV, Sleutels TH, Jeremiasse AW, Rozendal RA (2008) Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ Sci Technol 42:8630–8640

    Article  CAS  Google Scholar 

  • Lovley DR (2006) Bug juice: harvesting electricity with microorganisms. Nat Rev Microbiol 4:497–508

    Article  CAS  Google Scholar 

  • Murray AE, Lies D, Li G, Nealson K, Zhou J, Tiedje JM (2001) DNA/DNA hybridization to microarrays reveals gene-specific differences between closely related microbial genomes. Proc Natl Acad Sci U S A 98:9853–9858

    Article  CAS  Google Scholar 

  • Myers CR, Myers JM (1992) Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1. J Bacteriol 174:3429–3438

    CAS  Google Scholar 

  • Park DH, Zeikus JG (2002) Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens. Appl Microbiol Biotechnol 59:58–61

    Article  CAS  Google Scholar 

  • Park DH, Zeikus JG (2003) Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol Bioeng 81:348–355

    Article  CAS  Google Scholar 

  • Qiao Y, Bao SJ, Li CM, Cui XQ, Lu ZS, Guo J (2008) Nanostructured polyaniline/titanium dioxide composite anode for microbial fuel cells. ACS Nano 2:113–119

    Article  CAS  Google Scholar 

  • Quan X, Yang SG, Ruan XL, Zhao HM (2005) Preparation of titania nanotubes and their environmental applications as electrode. Environ Sci Technol 39:3770–3775

    Article  CAS  Google Scholar 

  • Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70:5373–5382

    Article  CAS  Google Scholar 

  • Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435(7045):1098–1101

    Article  CAS  Google Scholar 

  • Ringeisen BR, Henderson E, Wu PK, Pietron J, Ray R, Little B, Biffinger JC, Jones-Meehan JM (2006) High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP 10. Environ Sci Technol 40:2629–2634

    Article  CAS  Google Scholar 

  • Rozendal RA, Hamelers HVM, Euverink GJW, Metz SJ, Buisman CJN (2006) Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int J Hydrogen Energ 31:1632–1640

    Article  CAS  Google Scholar 

  • Scott JH, Nealson KH (1994) A biochemical study of the intermediary carbon metabolism of Shewanella putrefaciens. J Bacteriol 176(11):3408–3411

    CAS  Google Scholar 

  • Sharma T, Leela Mohana Reddy A, Chandra TS, Ramaprabhu S (2008) Development of carbon nanotubes and nanofluids based microbial fuel cell. Int J Hydrogen Energ 33:6749–6754

    Article  CAS  Google Scholar 

  • Shea C, Clauwaert P, Verstraete W, Nerenberg R (2008) Adapting a denitrifying biocathode for perchlorate reduction. Water Sci Technol 58(10):1941–1946

    Article  CAS  Google Scholar 

  • Shi L, Squier TC, Zachara JM, Fredrickson JK (2007) Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multiheme c-type cytochromes. Mol Microbiol 65:12–20

    Article  CAS  Google Scholar 

  • Sukkasem C, Xu S, Park S, Boonsawang P, Liu H (2008) Effect of nitrate on the performance of single chamber air cathode microbial fuel cells. Water Res 42(19):4743–4750

    Article  CAS  Google Scholar 

  • Thormann KM, Saville RM, Shukla S, Pelletier DA, Spormann AM (2004) Initial phases of biofilm formation in Shewanella oneidensis MR-1. J Bacteriol 186(23):8096–8104

    Article  CAS  Google Scholar 

  • Thormann KM, Duttler S, Saville RM, Hyodo M, Shukla S, Hayakawa Y, Spormann AM (2006) Control of formation and cellular detachment from Shewanella oneidensis MR-1 biofilms by cyclic di-GMP. J Bacteriol 188:2681–2691

    Article  CAS  Google Scholar 

  • Tsai HY, Wu Ch-Ch, Lee Ch-Y, Shih EP (2009) Microbial fuel cell performance of multiwall carbon nanotubes on carbon cloth as electrodes. J Power Sources 194:199–205

    Article  CAS  Google Scholar 

  • von Canstein H, Ogawa J, Shimizu S, Lloyd JR (2008) Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl Environ Microbiol 74:615–623

    Article  Google Scholar 

  • Yang Y, Harris DP, Luo F, Wu L, Parsons AB, Palumbo AV, Zhou J (2008) Characterization of the Shewanella oneidensis Fur gene: roles in iron and acid tolerance response. BMC Genomics 9(Suppl 1):S11

    Article  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the U.S. National Science Foundation CBET 0828544 and funds from ONAMI/DOD (ARL-DOD Cooperative Agreement# W911NF-07-2-0083). We thank Barbara Gvakharia and Caprice Rosato for helpful suggestions. We also thank Margaret Romine of Pacific Northwest Laboratories for valuable comments on the manuscript. We also thank anonymous reviewers for their significant suggested improvements imparted as part of a prior review of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Chaplen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1160 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, S., Liu, H., Fan, Y. et al. Enhanced performance and mechanism study of microbial electrolysis cells using Fe nanoparticle-decorated anodes. Appl Microbiol Biotechnol 93, 871–880 (2012). https://doi.org/10.1007/s00253-011-3643-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3643-2

Keywords

Navigation