, Volume 82, Issue 1, pp 87-94
Date: 11 Oct 2008

Purification of an alcohol dehydrogenase involved in the conversion of methional to methionol in Oenococcus oeni IOEB 8406

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Oenococcus oeni, the major lactic acid bacteria involved in malolactic fermentation (MLF) in wine, is able to produce volatile sulfur compounds from methionine. Methional reduction is the last enzymatic step of methionol synthesis in methionine catabolism. Alcohol dehydrogenase (ADH) activity was found to be present in the soluble fraction of O. oeni IOEB 8406. An NAD(P)H-dependent ADH involved in the reduction of methional was then purified to homogeneity. Sequencing of the purified enzyme and amino acid sequence comparison with the database revealed the presence of a conserved sequence motif specific to the medium-chain zinc-containing NAD(P)H-dependent ADHs. Despite the great importance of ADH activities in wine flavor modification, this is the first report of the purification of an ADH isolated from O. oeni. The purified ADH does not seem to be involved in the modification of buttery and lactic notes or to be involved in the specific formation of volatile alcohols during MLF. The enzyme was not strictly specific of methional reduction and the highest reducing activity was obtained with acetaldehyde as substrate. The function of the purified ADH remains unclear, although the role of the sulfur atom in methional molecules in the interaction between enzyme and substrate was evidenced.