, Volume 81, Issue 1, pp 69-78

A cyanophycin synthetase from Thermosynechococcus elongatus BP-1 catalyzes primer-independent cyanophycin synthesis

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Cyanophycin synthesis is catalyzed by cyanophycin synthetase (CphA). It was believed that CphA requires l-aspartic acid (Asp), l-arginine (Arg), ATP, Mg2+, and a primer (low-molecular mass cyanophycin) for cyanophycin synthesis and catalyzes the elongation of a low-molecular mass cyanophycin. Despite extensive studies of cyanophycin, the mechanism of primer supply is still unclear, and already-known CphAs were primer-dependent enzymes. In the present study, we found that recombinant CphA from Thermosynechococcus elongatus BP-1 (Tlr2170 protein) catalyzed in vitro cyanophycin synthesis in the absence of a primer. The Tlr2170 protein showed strict substrate specificity toward Asp and Arg. The optimum pH was 9.0, and Mg2+ or Mn2+ was essential for cyanophycin synthesis. KCl enhanced the cyanophycin synthesis activity of the Tlr2170 protein; in contrast, dithiothreitol did not. The Tlr2170 protein appeared to be a 400 ± 9 kDa homo-tetramer. The Tlr2170 protein showed thermal stability and retained its 80% activity after a 60-min incubation at 50°C. In addition, we examined cyanophycin synthesis at 30°C, 40°C, 50°C, and 60°C. SDS-PAGE analysis showed that the molecular mass of cyanophycin increased with increased reaction temperature.