Applied Genetics and Molecular Biotechnology

Applied Microbiology and Biotechnology

, Volume 77, Issue 4, pp 879-890

First online:

Enhanced hydrogen production from glucose by metabolically engineered Escherichia coli

  • Toshinari MaedaAffiliated withArtie McFerrin Department of Chemical Engineering, Texas A & M University
  • , Viviana Sanchez-TorresAffiliated withArtie McFerrin Department of Chemical Engineering, Texas A & M University
  • , Thomas K. WoodAffiliated withArtie McFerrin Department of Chemical Engineering, Texas A & M UniversityDepartment of Biology, Texas A & M UniversityZachry Department of Civil and Environmental Engineering, Texas A & M University Email author 

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


To utilize fermentative bacteria for producing the alternative fuel hydrogen, we performed successive rounds of P1 transduction from the Keio Escherichia coli K-12 library to introduce multiple, stable mutations into a single bacterium to direct the metabolic flux toward hydrogen production. E. coli cells convert glucose to various organic acids (such as succinate, pyruvate, lactate, formate, and acetate) to synthesize energy and hydrogen from formate by the formate hydrogen-lyase (FHL) system that consists of hydrogenase 3 and formate dehydrogenase-H. We altered the regulation of FHL by inactivating the repressor encoded by hycA and by overexpressing the activator encoded by fhlA, removed hydrogen uptake activity by deleting hyaB (hydrogenase 1) and hybC (hydrogenase 2), redirected glucose metabolism to formate by using the fdnG, fdoG, narG, focA, focB, poxB, and aceE mutations, and inactivated the succinate and lactate synthesis pathways by deleting frdC and ldhA, respectively. The best of the metabolically engineered strains, BW25113 hyaB hybC hycA fdoG frdC ldhA aceE, increased hydrogen production 4.6-fold from glucose and increased the hydrogen yield twofold from 0.65 to 1.3 mol H2/mol glucose (maximum, 2 mol H2/mol glucose).


Enhanced hydrogen production Metabolic engineering P1 transduction Glucose metabolism Fermentative hydrogen