, Volume 61, Issue 11-12, pp 755-764
Date: 05 Jan 2010

NK gene complex and chromosome 19 loci enhance MHC resistance to murine cytomegalovirus infection

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

An H-2k MHC locus is critical for murine cytomegalovirus (MCMV) resistance in MA/My mice and virus control is abolished if H-2k is replaced with H-2b MHC genes from MCMV-susceptible C57L mice. Yet, H-2k resistance varies with genetic background; thus, modifiers of virus resistance must exist. To identify non-MHC resistance loci, spleen and liver MCMV levels and genome-wide genotypes were assessed in (C57L × MA/My) and (MA/My × C57L) F2 offspring (representing 550 meioses). Significantly, a non-Mendelian frequency of MHC genotypes was observed for offspring of the latter cross. Quantitative trait loci (QTL) and their interaction potential in MCMV resistance were assessed in R/qtl; QTL on chromosomes 17, 6, and 19 affected MCMV levels in infected animals. A chromosome 6 QTL was linked with the NK gene complex and acted in an additive fashion with an H-2k MHC QTL to mitigate spleen MCMV levels. We provide biological confirmation that this chromosome 6 QTL provided MCMV control independent of H-2k via NK cells. Importantly, both chromosome 6 and 19 QTLs contribute to virus control independent of H-2k. Altogether, MHC and non-MHC MCMV-resistance QTL contribute in early resistance to MCMV infection in this genetic system.