, Volume 61, Issue 7, pp 503-512
Date: 09 Jun 2009

Evidence for balancing selection acting on KIR2DL4 genotypes in rhesus macaques of Indian origin

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The interaction of killer-cell immunoglobulin-like receptors (KIR) and their respective major histocompatibility complex (MHC) ligands can alter the activation state of the natural killer (NK) cell. In both humans and rhesus macaques, particular types of non-classical MHC class I molecules are predominantly expressed on the trophoblast. In humans, human leukocyte antigen G has been demonstrated to act as a ligand for KIR2DL4, present on all NK cells, whereas Mamu-AG may execute a similar function in rhesus macaques. During primate evolution, orthologues of KIR2DL4 appear to have been highly conserved, suggesting strong purifying selection. A cohort of 112 related and unrelated rhesus macaques of mostly Indian origin were selected to study their KIR2DL4 genes for the occurrence of polymorphism. Comparison of the proximal region provided evidence for strong conservative selection acting on the exons encoding the Ig domains. As is found in humans, in the Indian rhesus macaque population, two different KIR2DL4 entities are encountered, which differ for their intra-cellular signalling motifs. One genotype contains a complex mutation in the distal region of exon 9, which negates a serine/threonine kinase site. Furthermore, both allelic entities are present in a distribution, which suggests that balancing selection is operating on these two distinct forms of KIR2DL4.