, Volume 59, Issue 1, pp 25-35
Date: 22 Nov 2006

A modular concept of HLA for comprehensive peptide binding prediction

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

A variety of algorithms have been successful in predicting human leukocyte antigen (HLA)-peptide binding for HLA variants for which plentiful experimental binding data exist. Although predicting binding for only the most common HLA variants may provide sufficient population coverage for vaccine design, successful prediction for as many HLA variants as possible is necessary to understand the immune response in transplantation and immunotherapy. However, the high cost of obtaining peptide binding data limits the acquisition of binding data. Therefore, a prediction algorithm, which applies the binding information from well-studied HLA variants to HLA variants, for which no peptide data exist, is necessary. To this end, a modular concept of class I HLA-peptide binding prediction was developed. Accurate predictions were made for several alleles without using experimental peptide binding data specific to those alleles. We include a comparison of module-based prediction and supertype-based prediction. The modular concept increased the number of predictable alleles from 15 to 75 of HLA-A and 12 to 36 of HLA-B proteins. Under the modular concept, binding data of certain HLA alleles can make prediction possible for numerous additional alleles. We report here a ranking of HLA alleles, which have been identified to be the most informative. Modular peptide binding prediction is freely available to researchers on the web at http://www.peptidecheck.org.