, Volume 27, Issue 6, pp 582-589

Confocal Raman microspectroscopy of the activation of single neutrophilic granulocytes

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Confocal Raman micro-spectroscopy has been applied to investigate the activation process of single, living neutrophilic granulocytes. Both resting cells as well as activated cells were measured. The activation of cells was performed with phorbol-12-myristate-13-acetate activator and Escherichia Coli bacteria. Raman microspectroscopy combines a high spatial resolution inside a single, living cell with detailed material information. Using this approach it can be concluded that activation of the cells with phorbol-12-myristate-13-acetate causes a change in the redox state of cytochrome b558. This protein is a part of the NADPH-oxidase complex that neutrophilic granulocytes employ to generate O2 , superoxide anion. Additionally a change in the redox state of myeloperoxidase can be observed. Myeloperoxidase is known to react with O2 . Activation of the cells with bacteria gives rise to corresponding changes in the Raman spectra. From this single cell study it can be concluded that the enzymes cytochrome b558 and myeloperoxidase are present inside the cytoplasm of the living cell, while participating in the redox processes. Activation causes an intra-cellular release of oxygen metabolites. Activation with bacteria of neutrophilic granulocytes from a patient with chronic granulomatous disease, that contain no cytochrome b558, led to typical changes in the redox state of myeloperoxidase. This indicates that in the bacterium/neutrophilic granulocyte system oxygen metabolites are generated that are capable of reacting with MPO.

Received: 1 September 1998 / Revised version: 20 February 1998 / Accepted: 22 February 1998