Skip to main content
Log in

The importance of N-methylations for the stability of the \(\beta ^{6.3}\)-helical conformation of polytheonamide B

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Polytheonamide B (pTB), a highly cytotoxic peptide produced by a symbiotic bacterium of the marine sponge Theonella swinhoei, forms a transmembrane pore consisting of 49 residues. More than half of its residues are posttranslationally modified. Epimerizations result in alternating L- and D-amino acids that allow the peptide to adopt a \(\beta ^{6.3}\)-helical conformation. Unusually, the wide \(\beta ^{6.3}\)-helix of pTB is stable in a polar environment, which is in contrast to gramicidin A, an antibiotic with similar function and structure. The role of the other posttranslational modifications (PTMs) such as side chain hydroxylations, C- and N-methylations is not well understood. In this study, the importance of these PTMs for the stability of \(\beta ^{6.3}\)-helix is investigated using computational tools. By reverting the modified residues to their precursors and monitoring the effect on the dominant structure, we show that the N-methylations are crucial for the stability of the \(\beta ^{6.3}\)-helix in a polar environment. They are the driving force for the formation of stable side chain hydrogen-bond chains that act as an “exoskeleton.” Such exoskeletons could present a general design strategy for helical peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allison JR, Riniker S, van Gunsteren WF (2012) Coarse-grained models for the solvents dimethyl sulfoxide, chloroform, and methanol. J Chem Phys 136:054505

    Article  PubMed  Google Scholar 

  • Arseniev AS, Barsukov IL, Bystrov VF, Lomize AL, Ovchinnikov YA (1985) \(^{1}\)H-NMR study of gramicidin A transmembrane ion channel: Head-to-head right-handed, single-stranded helices. FEBS Lett 186:168–174

    Article  CAS  PubMed  Google Scholar 

  • Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) Interaction models for water in relation to protein hydration. In: Pullman B (ed) Intermolecular forces. Springer, Netherlands, pp 331–342

    Chapter  Google Scholar 

  • Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  • Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2010) Marine natural products. Nat Prod Rep 27:165–237

    Article  CAS  PubMed  Google Scholar 

  • Bong DT, Clark TD, Granja JR, Ghadiri MR (2001) Self-assembling organic nanotubes. Angew Chem Int Ed 40:988–1011

    Article  CAS  Google Scholar 

  • Craney A, Ahmed S, Nodwell J (2013) Towards a new science of secondary metabolism. J Antibiot 66:387–400

    Article  CAS  PubMed  Google Scholar 

  • Eichenberger AP, Allison JR, Dolenc J, Geerke DP, Horta BAC, Meier K, Oostenbrink C, Schmid N, Steiner D, Wang D, van Gunsteren WF (2011) The GROMOS++ software for the analysis of biomolecular simulation trajectories. J Chem Theory Comput 7:3379–3390

    Article  CAS  PubMed  Google Scholar 

  • Freeman MF, Gurgui C, Helf MJ, Morinaka BI, Uria AR, Oldham NJ, Sahl HG, Matsunaga S, Piel J (2012) Metagenome mining reveals polytheonamides as posttranslationally modified ribosomal peptides. Science 338:387–390

    Article  CAS  PubMed  Google Scholar 

  • Freeman MF, Helf MJ, Bhushan A, Morinaka BI, Piel J (2016) Seven enzymes create extraordinary molecular complexity in a uncultivated bacterium. Nat Chem (accepted)

  • Hamada T, Sugawara T, Matsunaga S, Fusetani N (1994) Polytheonamides, unprecedented highly cytotoxic polypeptides from the marine sponge Theonella swinhoei 1. Isolation and component amino acids. Tetrahedron Lett 35:719–720

    Article  CAS  Google Scholar 

  • Hamada T, Matsunaga S, Fujiwara M, Fujita K, Hirota H, Schmucki R, Güntert P, Fusetani N (2010) Solution structure of polytheonamide B, a highly cytotoxic nonribosomal polypeptide from marine sponge. J Am Chem Soc 132:12941–12945

    Article  CAS  PubMed  Google Scholar 

  • Haynes WM (2014) CRC handbook of chemistry and physics, 95th edn. CRC, Boca Raton

  • Herrell WE, Heilman D (1941) Experimental and clinical studies on gramicidin 1. J Clin Invest 20:583–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hockney RW (1970) The potential calculation and some applications. Methods Comput Phys 9:135–211

    Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  PubMed  Google Scholar 

  • Koeppe RE II, Schmutzer SE, Andersen OS (2011) Gramicidin channels as cation nanotubes. In: Hayden O, Nielsch K (eds) Molecular- and nano-tubes. Springer, USA, pp 11–30

    Chapter  Google Scholar 

  • Inoue M, Shinohara N, Tanabe S, Takahashi T, Okura K, Itoh H, Mizoguchi Y, Iida M, Lee N, Matsuoka S (2010) Total synthesis of the large non-ribosomal peptide polytheonamide B. Nat Chem 2:280–285

    Article  CAS  PubMed  Google Scholar 

  • Iwamoto M, Shimizu H, Muramatsu I, Oiki S (2010) A cytotoxic peptide from a marine sponge exhibits ion channel activity through vectorial-insertion into the membrane. FEBS Lett 584:3995–3999

    Article  CAS  PubMed  Google Scholar 

  • Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka S, Shinohara N, Takahashi T, Iida M, Inoue M (2011) Functional analysis of synthetic substructures of polytheonamide B: a transmembrane channel-forming peptide. Angew Chem Int Ed 50:4879–4883

    Article  CAS  Google Scholar 

  • Mori T, Kokubo K, Oiki S, Okamoto Y (2011) Dynamic structure of the polytheonamide b channel studied by normal mode analysis. Mol Sim 37:975–985

    Article  CAS  Google Scholar 

  • Oostenbrink C, Villa A, Mark AE, van Gunsteren WF (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25:1656–1676

    Article  CAS  PubMed  Google Scholar 

  • Pascal SM, Cross TA (1993) High-resolution structure and dynamic implications for a double-helical gramicidin A conformer. J Biomol NMR 3:495–513

    Article  CAS  PubMed  Google Scholar 

  • Petrov D, Margreitter C, Grandits M, Oostenbrink C, Zagrovic B (2013) A systematic framework for molecular dynamics simulations of protein post-translational modifications. PLoS Comput Biol 9:e1003154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poger D, van Gunsteren WF, Mark AE (2009) A new force field for simulating phosphatidylcholine bilayers. J Comput Chem 31:1117–1125

    Article  Google Scholar 

  • Römer DU, Fenude-Schoch E, Lorenzi GP, Rüegger H (1993) On intrahelical hydrogen bonding and stability of \(\beta\)-helices: the behavior of some D, L-alternating oligoleucines with an N-methylated residue. Helv Chim Acta 76:451–458

    Article  Google Scholar 

  • Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  • Schmid N, Eichenberger AP, Choutko A, Riniker S, Winger M, Mark AE, Gunsteren WFV (2011) Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur Biophys J 40:843–856

  • Schmid N, Christ CD, Christen M, Eichenberger AP, van Gunsteren WF (2012) Architecture, implementation and parallelisation of the GROMOS software for biomolecular simulation. Comput Phys Commun 183:890–903

    Article  CAS  Google Scholar 

  • Tironi IG, van Gunsteren WF (1994) A molecular dynamics simulation study of chloroform. Mol Phys 83:381–403

    Article  CAS  Google Scholar 

  • Tironi IG, Sperb R, Smith PE, van Gunsteren WF (1995) A generalized reaction field method for molecular dynamics simulations. J Chem Phys 102:5451–5459

    Article  CAS  Google Scholar 

  • Townsley LE, Tucker WA, Sham S, Hinton JF (2001) Structures of gramicidins A, B, and C incorporated into sodium dodecyl sulfate micelles. Biochemistry 40:11676–11686

    Article  CAS  PubMed  Google Scholar 

  • Wallace BA, Ravikumar K (1988) The gramicidin pore: crystal structure of a cesium complex. Science 241:182–187

    Article  CAS  PubMed  Google Scholar 

  • Walser R, Mark AE, van Gunsteren WF, Lauterbach M, Wipff G (2000) The effect of force-field parameters on properties of liquids: parametrization of a simple three-site model for methanol. J Chem Phys 112:10450

    Article  CAS  Google Scholar 

  • Webster NS, Blackall LL (2008) What do we really know about sponge-microbial symbioses? ISME J 3:1–3

    Article  PubMed  Google Scholar 

  • Wohlfahrt C (1991) Static dielectric constants of pure liquids and binary liquid mixtures. In: Madelung O (ed) Landolt-Börnstein—group IV physical chemistry. Springer Materials, Berlin Heidelberg

    Google Scholar 

  • Wüthrich K, Billeter M, Braun W (1983) Pseudo-structures for the 20 common amino acids for use in studies of protein conformations by measurements of intramolecular proton-proton distance constraints with nuclear magnetic resonance. J Mol Biol 169:949–961

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Michael Freeman and Jörn Piel for useful discussions. A. R. thanks Victor Holanda Rusu and Jožica Dolenc for help with the analysis. The authors gratefully acknowledge financial support by the Swiss National Science Foundation (Grant Number 200021-159713) and by ETH Zürich (ETH-08 15-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sereina Riniker.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1528 KB)

Supplementary material 2 ( zip 4 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Renevey, A., Riniker, S. The importance of N-methylations for the stability of the \(\beta ^{6.3}\)-helical conformation of polytheonamide B. Eur Biophys J 46, 363–374 (2017). https://doi.org/10.1007/s00249-016-1179-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-016-1179-1

Keywords

Navigation