Skip to main content
Log in

Direct interaction of a CFTR potentiator and a CFTR corrector with phospholipid bilayers

  • Biophysics Letter
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Cystic fibrosis transmembrane conductance regulator (CFTR) potentiators and correctors are new drugs that target the basic CFTR protein defect and are expected to benefit cystic fibrosis patients. To optimize the substances so far proposed for human use, and to minimise unwanted side effects, it is essential to investigate possible interactions between the drugs and cell components. We used small-angle X-ray scattering with synchrotron radiation to analyse the effects of two representative drugs, the potentiator VX-770 (Ivacaftor), approved for human use, and the corrector VX-809 (Lumacaftor), on a model phospholipid membrane. By reconstruction of the electron density profile of unilamellar vesicles treated with VX-770 or VX-809 we found that these drugs penetrate the phospholipid bilayer. VX-809 becomes homogeneously distributed throughout the bilayer whereas VX-770 accumulates predominantly in the internal leaflet, behaviour probably favoured by the asymmetry of the bilayer, because of vesicle curvature. Penetration of the bilayer by these drugs, probably as part of the mechanisms of permeation, causes destabilization of the membrane; this must be taken into account during future drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Bobadilla JL, Macek MJ, Fine JP, Farrell PM (2002) Cystic fibrosis: a worldwide analysis of CFTR mutations-correlation with incidence data and application to screening. Hum Mutat 19:575–606

    Article  CAS  PubMed  Google Scholar 

  • Brzustowicz MR, Brunger AT (2005) X-ray scattering from unilamellar lipid vesicles. J Appl Cryst 38:126–131

    Article  CAS  Google Scholar 

  • Dalemans W, Barbry P, Champigny G, Jallat S, Dott K, Dreyer D, Crystal RG, Pavirani A, Lecocq JP, Lazdunski M (1991) Altered chloride ion channel kinetics associated with the delta F508 cystic fibrosis mutation. Nature 354:526–528

    Article  CAS  PubMed  Google Scholar 

  • Gianotti A, Melani R, Caci E, Sondo E, Ravazzolo R, Galietta LJV, Zegarra-Moran O (2013) Epithelial sodium channel silencing as a strategy to correct the airway surface fluid deficit in cystic fibrosis. Am J Respir Cell Mol Biol 49:445–452

    Article  CAS  PubMed  Google Scholar 

  • Hammersley AP, Svensson SO, Hanfland M, Fitch AN, Häusermann D (1996) Two-dimensional detector software: from real detector to idealised image or two-theta scan. High Press Res 14:248–325

    Article  Google Scholar 

  • Haydon DA, Hendry BM, Levinson SR, Requena J (1977) The molecular mechanisms of anaesthesia. Nature 268:356–358

    Article  CAS  PubMed  Google Scholar 

  • Hirai M, Iwase H, Hayakawa T, Koizumi M, Takahashi H (2003) Determination of asymmetric structure of ganglioside-DPPC mixed vesicle using SANS, SAXS, and DLS. Biophys J 85:1600–1610

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kucerka N, Pencer J, Sachs JN, Nagle JF, Katsaras J (2007) Curvature effect on the structure of phospholipid bilayers. Langmuir 23:1292–1299

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lewis BA, Engelman DM (1983) Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles. J Mol Biol 166:211–217

    Article  CAS  PubMed  Google Scholar 

  • Lopes LB, Scarpa MV, Silva GVJ, Rodrigues DC, Santilli CV, Oliveira AG (2004) Studies on the encapsulation of diclofenac in small unilamellar liposomes of soya phosphatidylcholine. Colloids Surf B Biointerfaces 39:151–158

    Article  CAS  PubMed  Google Scholar 

  • Lukacs GL, Mohamed A, Kartner N, Chang XB, Riordan JR, Grinstein S (1994) Conformational maturation of CFTR but not its mutant counterpart (delta F508) occurs in the endoplasmic reticulum and requires ATP. EMBO J 13:6076–6086

    CAS  PubMed Central  PubMed  Google Scholar 

  • MacDonald RC, MacDonald RI, Menco BP, Takeshita K, Subbarao NK, Hu LR (1991) Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochim Biophys Acta 1061:297–303

    Article  CAS  PubMed  Google Scholar 

  • Mateu L, Moran O (1986) Reversible changes in myelin structure and electrical activity during anesthesia in vivo. Biochim Biophys Acta 862:17–26

    Article  CAS  PubMed  Google Scholar 

  • Moran O, Galietta LJV, Zegarra-Moran O (2005) Binding site of activators of the cystic fibrosis transmembrane conductance regulator in the nucleotide binding domains. Cell Mol Life Sci 62:446–460

    Article  CAS  PubMed  Google Scholar 

  • Pabst G, Rappolt M, Amenitsch H, Laggner P (2000) Structural information from multilamellar liposomes at full hydration: full q-range fitting with high-quality X-ray data. Phys Rev E62:4000–4009

    Google Scholar 

  • Ramsey BW, Davies J, McElvaney NG, Tullis E, Bell SC, Dřevínek P, Griese M, McKone EF, Wainwright CE, Konstan MW, Moss R, Ratjen F, Sermet-Gaudelus I, Rowe SM, Dong Q, Rodriguez S, Yen K, Ordoñez C, Elborn JS (2011) A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med 365:1663–1672

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Su C, Wu S, Jeng U, Lee M, Su A, Liao K, Lin W, Huang Y, Chen C (2013) Peptide-induced bilayer thinning structure of unilamellar vesicles and the related binding behavior as revealed by X-ray scattering. Biochim Biophys Acta 1828:528–534

    Article  CAS  PubMed  Google Scholar 

  • Van Goor F, Hadida S, Grootenhuis PDJ, Burton B, Stack JH, Straley KS, Decker CJ, Miller M, McCartney J, Olson ER, Wine JJ, Frizzell RA, Ashlock M, Negulescu PA (2011) Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809. Proc Natl Acad Sci USA 108:18843–18848

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Partially supported by Fondazione per la Ricerca sulla Fibrosi Cistica (grant FFC4/2012). These experiments were performed at the BL11 beamline of the ALBA Synchrotron Light Facility with the collaboration of ALBA staff.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Moran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baroni, D., Zegarra-Moran, O., Svensson, A. et al. Direct interaction of a CFTR potentiator and a CFTR corrector with phospholipid bilayers. Eur Biophys J 43, 341–346 (2014). https://doi.org/10.1007/s00249-014-0956-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-014-0956-y

Keywords

Navigation