Skip to main content
Log in

Cardiac magnetic resonance imaging of rapid VCAM-1 up-regulation in myocardial ischemia–reperfusion injury

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Inflammatory response plays an important role in myocardial ischaemia–reperfusion (IR) injury. Up-regulation of vascular cell adhesion molecule-1 (VCAM) contributes to this. We examined the feasibility of using intravenously administered VCAM–MPIO (microparticle iron oxide) to characterize VCAM expression patterns in myocardial IR injury. Myocardial ischemia was simulated by 30 min of transient ligation of the left coronary vessel in rats. Purified, monoclonal, rat-specific, mouse VCAM antibody coupled to MPIO was administered through the tail vein at 3 h post reperfusion and the rats were sacrificed 1 h later. High resolution 3D ex vivo MRI images were acquired at 9.4 Tesla. Extensive foci of signal voids were observed on T2*-weighted gradient-echo sequences, which corresponded to focal deposits of MPIOs observed in histological sections. The spatial density of the signal voids (expressed as a percentage of pixels below a threshold value) was increased in the peri-infarct zone compared with non-infarct zone (32.5 ± 4 % vs. 13.9 ± 5 %; n = 6; p < 0.05) and was substantially greater than the signal loss due to non-specific binding seen in rats administered IgG control MPIO (2.0 ± 1 %; n = 6; p < 0.05). The VCAM-specific MPIO signal was also seen in myocardium and pericardium in segments remote from the IR injury, but not in rats undergoing a sham operation. In conclusion, molecular imaging in a model of myocardial IR injury is possible using high field MRI and VCAM–MPIOs and may provide novel insights beyond those achieved by standard histological and molecular analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akhtar AM, Schneider JE, Chapman SJ, Jefferson A, Digby JE, Mankia K, Chen Y, McAteer MA, Wood KJ, Choudhury RP (2010) In vivo quantification of VCAM-1 expression in renal ischemia reperfusion injury using non-invasive magnetic resonance molecular imaging. PLoS ONE 5:e12800

    Article  PubMed  Google Scholar 

  • Ambrosio G, Tritto I (1999) Reperfusion injury: experimental evidence and clinical implications. Am Heart J 138:S69–S75

    Article  PubMed  CAS  Google Scholar 

  • Bhindi R, Khachigian LM, Lowe HC (2006) DNAzymes targeting the transcription factor Egr-1 reduce myocardial infarct size following ischemia-reperfusion in rats. J Thromb Haemost 4:1479–1483

    Article  PubMed  CAS  Google Scholar 

  • Bowden RA, Ding ZM, Donnachie EM, Petersen TK, Michael LH, Ballantyne CM, Burns AR (2002) Role of alpha4 integrin and VCAM-1 in CD18-independent neutrophil migration across mouse cardiac endothelium. Circ Res 90:562–569

    Article  PubMed  CAS  Google Scholar 

  • Carlos TM, Schwartz BR, Kovach NL, Yee E, Rosa M, Osborn L, Chi-Rosso G, Newman B, Lobb R et al (1990) Vascular cell adhesion molecule-1 mediates lymphocyte adherence to cytokine-activated cultured human endothelial cells. Blood 76:965–970

    PubMed  CAS  Google Scholar 

  • Chan W, Duffy S, Ellims A, Dart A, Taylor A (2011) Evidence for an acute diffuse fibrotic response throughout the left ventricle following acute myocardial infarction. Heart Lung Circ 20:S1–S155

    Google Scholar 

  • Chen IY, Wu JC (2011) Cardiovascular molecular imaging: focus on clinical translation. Circulation 123:425–443

    Article  PubMed  Google Scholar 

  • Chen HH, Le Visage C, Qiu B, Du X, Ouwerkerk R, Leong KW, Yang X (2005) MR imaging of biodegradable polymeric microparticles: a potential method of monitoring local drug delivery. Magn Reson Med 53:614–620

    Article  PubMed  CAS  Google Scholar 

  • Choudhury RP, Fisher EA (2009) Molecular imaging in atherosclerosis, thrombosis, and vascular inflammation. Arterioscler Thromb Vasc Biol 29:983–991

    Article  PubMed  CAS  Google Scholar 

  • Entman ML, Smith CW (1994) Postreperfusion inflammation: a model for reaction to injury in cardiovascular disease. Cardiovasc Res 28:1301–1311

    Article  PubMed  CAS  Google Scholar 

  • Gabrielsen A, Lawler PR, Yongzhong W, Steinbruchel D, Blagoja D, Paulsson-Berne G, Kastrup J, Hansson GK (2007) Gene expression signals involved in ischemic injury, extracellular matrix composition and fibrosis defined by global mRNA profiling of the human left ventricular myocardium. J Mol Cell Cardiol 42:870–883

    Article  PubMed  CAS  Google Scholar 

  • Goldberg RJ, Currie K, White K, Brieger D, Steg PG, Goodman SG, Dabbous O, Fox KA, Gore JM (2004) Six-month outcomes in a multinational registry of patients hospitalized with an acute coronary syndrome [the global registry of acute coronary events (GRACE)]. Am J Cardiol 93:288–293

    Article  PubMed  Google Scholar 

  • Hamoudeh M, Fessi H (2006) Preparation, characterization and surface study of poly-epsilon caprolactone magnetic microparticles. J Colloid Interface Sci 300:584–590

    Article  PubMed  CAS  Google Scholar 

  • Hayward R, Campbell B, Shin YK, Scalia R, Lefer AM (1999) Recombinant soluble P-selectin glycoprotein ligand-1 protects against myocardial ischemic reperfusion injury in cats. Cardiovasc Res 41:65–76

    Article  PubMed  CAS  Google Scholar 

  • Hemmingsson A, Carlsten J, Ericsson A, Klaveness J, Sperber GO, Thuomas KA (1987) Relaxation enhancement of the dog liver and spleen by biodegradable superparamagnetic particles in proton magnetic resonance imaging. Acta Radiol 28:703–705

    Article  PubMed  CAS  Google Scholar 

  • Hoyte LC, Brooks KJ, Nagel S, Akhtar A, Chen R, Mardiguian S, McAteer MA, Anthony DC, Choudhury RP, Buchan AM, Sibson NR (2010) Molecular magnetic resonance imaging of acute vascular cell adhesion molecule-1 expression in a mouse model of cerebral ischemia. J Cereb Blood Flow Metab 30:1178–1187

    Article  PubMed  CAS  Google Scholar 

  • Hwang WY, Foote J (2005) Immunogenicity of engineered antibodies. Methods 36:3–10

    Article  PubMed  CAS  Google Scholar 

  • Jolly SR, Kane WJ, Hook BG, Abrams GD, Kunkel SL, Lucchesi BR (1986) Reduction of myocardial infarct size by neutrophil depletion: effect of duration of occlusion. Am Heart J 112:682–690

    Article  PubMed  CAS  Google Scholar 

  • Keeley EC, Boura JA, Grines CL (2003) Primary angioplasty versus intravenous thrombolytic therapy for acute myocardial infarction: a quantitative review of 23 randomised trials. Lancet 361:13–20

    Article  PubMed  Google Scholar 

  • Kloner RA, Rezkalla SH (2004) Cardiac protection during acute myocardial infarction: where do we stand in 2004? J Am Coll Cardiol 44:276–286

    Article  PubMed  Google Scholar 

  • Litt MR, Jeremy RW, Weisman HF, Winkelstein JA, Becker LC (1989) Neutrophil depletion limited to reperfusion reduces myocardial infarct size after 90 minutes of ischemia. Evidence for neutrophil-mediated reperfusion injury. Circulation 80:1816–1827

    Article  PubMed  CAS  Google Scholar 

  • Lu L, Chen SS, Zhang JQ, Ramires FJ, Sun Y (2004) Activation of nuclear factor-kappaB and its proinflammatory mediator cascade in the infarcted rat heart. Biochem Biophys Res Commun 321:879–885

    Article  PubMed  CAS  Google Scholar 

  • McAteer MA, Sibson NR, von Zur Muhlen C, Schneider JE, Lowe AS, Warrick N, Channon KM, Anthony DC, Choudhury RP (2007) In vivo magnetic resonance imaging of acute brain inflammation using microparticles of iron oxide. Nat Med 13:1253–1258

    Article  PubMed  CAS  Google Scholar 

  • McAteer MA, Schneider JE, Ali ZA, Warrick N, Bursill CA, von zur Muhlen C, Greaves DR, Neubauer S, Channon KM, Choudhury RP (2008) Magnetic resonance imaging of endothelial adhesion molecules in mouse atherosclerosis using dual-targeted microparticles of iron oxide. Arterioscler Thromb Vasc Biol 28:77–83

    Article  PubMed  CAS  Google Scholar 

  • McAteer MA, Akhtar AM, von zur Muhlen C, Choudhury RP (2010) An approach to molecular imaging of atherosclerosis, thrombosis, and vascular inflammation using microparticles of iron oxide. Atherosclerosis 209:18–27

    Article  PubMed  CAS  Google Scholar 

  • Montet X, Montet-Abou K, Reynolds F, Weissleder R, Josephson L (2006) Nanoparticle imaging of integrins on tumor cells. Neoplasia 8:214–222

    Article  PubMed  CAS  Google Scholar 

  • Nahrendorf M, Jaffer FA, Kelly KA, Sosnovik DE, Aikawa E, Libby P, Weissleder R (2006) Noninvasive vascular cell adhesion molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis. Circulation 114:1504–1511

    Article  PubMed  CAS  Google Scholar 

  • Nahrendorf M, Sosnovik D, Chen JW, Panizzi P, Figueiredo JL, Aikawa E, Libby P, Swirski FK, Weissleder R (2008) Activatable magnetic resonance imaging agent reports myeloperoxidase activity in healing infarcts and noninvasively detects the antiinflammatory effects of atorvastatin on ischemia-reperfusion injury. Circulation 117:1153–1160

    Article  PubMed  CAS  Google Scholar 

  • Sakhalkar HS, Dalal MK, Salem AK, Ansari R, Fu J, Kiani MF, Kurjiaka DT, Hanes J, Shakesheff KM, Goetz DJ (2003) Leukocyte-inspired biodegradable particles that selectively and avidly adhere to inflamed endothelium in vitro and in vivo. Proc Natl Acad Sci USA 100:15895–15900

    Article  PubMed  CAS  Google Scholar 

  • Schwarz M, Meade G, Stoll P, Ylanne J, Bassler N, Chen YC, Hagemeyer CE, Ahrens I, Moran N, Kenny D, Fitzgerald D, Bode C, Peter K (2006) Conformation-specific blockade of the integrin GPIIb/IIIa: a novel antiplatelet strategy that selectively targets activated platelets. Circ Res 99:25–33

    Article  PubMed  CAS  Google Scholar 

  • Sosnovik DE, Garanger E, Aikawa E, Nahrendorf M, Figuiredo JL, Dai G, Reynolds F, Rosenzweig A, Weissleder R, Josephson L (2009a) Molecular MRI of cardiomyocyte apoptosis with simultaneous delayed-enhancement MRI distinguishes apoptotic and necrotic myocytes in vivo: potential for midmyocardial salvage in acute ischemia. Circ Cardiovasc Imaging 2:460–467

    Article  PubMed  Google Scholar 

  • Sosnovik DE, Nahrendorf M, Panizzi P, Matsui T, Aikawa E, Dai G, Li L, Reynolds F, Dorn GW 2nd, Weissleder R, Josephson L, Rosenzweig A (2009b) Molecular MRI detects low levels of cardiomyocyte apoptosis in a transgenic model of chronic heart failure. Circ Cardiovasc Imaging 2:468–475

    Article  PubMed  Google Scholar 

  • von zur Muhlen C, von Elverfeldt D, Moeller JA, Choudhury RP, Paul D, Hagemeyer CE, Olschewski M, Becker A, Neudorfer I, Bassler N, Schwarz M, Bode C, Peter K (2008) Magnetic resonance imaging contrast agent targeted toward activated platelets allows in vivo detection of thrombosis and monitoring of thrombolysis. Circulation 118:258–267

    Article  PubMed  CAS  Google Scholar 

  • von zur Muhlen C, Peter K, Ali ZA, Schneider JE, McAteer MA, Neubauer S, Channon KM, Bode C, Choudhury RP (2009) Visualization of activated platelets by targeted magnetic resonance imaging utilizing conformation-specific antibodies against glycoprotein IIb/IIIa. J Vasc Res 46:6–14

    Article  PubMed  CAS  Google Scholar 

  • von Zur MuhlenC, von Elverfeldt D, Choudhury RP, Ender J, Ahrens I, Schwarz M, Hennig J, Bode C, Peter K (2008) Functionalized magnetic resonance contrast agent selectively binds to glycoprotein IIb/IIIa on activated human platelets under flow conditions and is detectable at clinically relevant field strengths. Mol Imaging 7:59–67

    Google Scholar 

  • Wang QD, Pernow J, Sjoquist PO, Ryden L (2002) Pharmacological possibilities for protection against myocardial reperfusion injury. Cardiovasc Res 55:25–37

    Article  PubMed  CAS  Google Scholar 

  • Winter PM, Morawski AM, Caruthers SD, Fuhrhop RW, Zhang H, Williams TA, Allen JS, Lacy EK, Robertson JD, Lanza GM, Wickline SA (2003) Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. Circulation 108:2270–2274

    Article  PubMed  CAS  Google Scholar 

  • Zhao ZQ, Lefer DJ, Sato H, Hart KK, Jefforda PR, Vinten-Johansen J (1997) Monoclonal antibody to ICAM-1 preserves postischemic blood flow and reduces infarct size after ischemia-reperfusion in rabbit. J Leukoc Biol 62:292–300

    PubMed  CAS  Google Scholar 

  • Zhu D, White RD, Hardy PA, Weerapreeyakul N, Sutthanut K, Jay M (2006) Biocompatible nanotemplate-engineered nanoparticles containing gadolinium: stability and relaxivity of a potential MRI contrast agent. J Nanosci Nanotechnol 6:996–1003

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the North Shore Heart Research Foundation and by Project grant 632551 from the National Health & Medical Research Council (Australia). GF was supported the University of Sydney Medical Foundation and Viertel Charitable Foundation. Animal NMR imaging facilities were funded by the Australian Research Council.

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gemma A. Figtree.

Additional information

Stuart M. Grieve, Jacob Lønborg, and Jawad Mazhar contributed equally to this manuscript.

Special Issue: From kinetics to imaging: An NMR odyssey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grieve, S.M., Lønborg, J., Mazhar, J. et al. Cardiac magnetic resonance imaging of rapid VCAM-1 up-regulation in myocardial ischemia–reperfusion injury. Eur Biophys J 42, 61–70 (2013). https://doi.org/10.1007/s00249-012-0857-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-012-0857-x

Keywords

Navigation