Skip to main content
Log in

The role of G-domain orientation and nucleotide state on the Ras isoform-specific membrane interaction

  • ORIGINAL PAPER
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Ras proteins are proto-oncogenes that function as molecular switches linking extracellular stimuli with an overlapping but distinctive range of biological outcomes. Although modulatable interactions between the membrane and the Ras C-terminal hypervariable region (HVR) harbouring the membrane anchor motifs enable signalling specificity to be determined by their location, it is becoming clear that the spatial orientation of different Ras proteins is also crucial for their functions. To reveal the orientation of the G-domain at membranes, we conducted an extensive study on different Ras isoforms anchored to model raft membranes. The results show that the G-domain mediates the Ras–membrane interaction by inducing different sets of preferred orientations in the active and inactive states with largely parallel orientation relative to the membrane of most of the helices. The distinct locations of the different isoforms, exposing them to different effectors and regulators, coupled with different G-domain-membrane orientation, suggests synergy between this type of recognition motif and the specificity conferred by the HVR, thereby validating the concept of isoform specificity in Ras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

aa:

Amino acid

AFM:

Atomic-force microscopy

ATR-FTIR:

Attenuated total-reflection Fourier-transform infrared

DMPC:

1,2-Dimyristoyl-sn-glycero-3-phosphocholine

DOPC:

1,2-Dioleoyl-sn-glycero-3-phosphocholine

DOPG:

1,2-Dioleoyl-sn-glycero-3-phospho-(1′-rac-glycerol)

DPPC:

1,2-Dipalmitoyl-sn-glycero-3-phosphocholine

DPPG:

1,2-Dipalmitoyl-sn-glycero-3-phospho-(1′-rac-glycerol)

HVR:

Hypervariable region

IRRAS:

Infrared reflection absorption spectroscopy

ld :

Liquid-disordered

lo :

Liquid-ordered

MD:

Molecular dynamics

PM:

Plasma membrane

References

  • Abankwa D, Gorfe AA, Hancock JF (2008a) Mechanisms of Ras membrane organization and signalling: Ras on a rocker. Cell Cycle 7:2667–2673

    Article  PubMed  CAS  Google Scholar 

  • Abankwa D, Hanzal-Bayer M, Ariotti N, Plowman SJ, Gorfe AA, Parton RG, McCammon JA, Hancock JF (2008b) A novel switch region regulates H-Ras membrane orientation and signal output. EMBO J 27:727–735

    Article  PubMed  CAS  Google Scholar 

  • Abankwa D, Gorfe AA, Inder K, Hancock JF (2010) Ras membrane orientation and nanodomain localization generate isoform diversity. Proc Natl Acad Sci USA 107:1130–1135

    Article  PubMed  CAS  Google Scholar 

  • Ausili A, Corbalan-Garcia S, Gomez-Fernandez JC, Marsh D (2011) Membrane docking of the C2 domain from protein kinase C alpha as seen by polarized ATR-IR. The role of PIP2. Biochim Biophys Acta Biomembr 1808:684–695

    Article  CAS  Google Scholar 

  • Axelsen PH, Citra MJ (1996) Orientational order determination by internal reflection infrared spectroscopy. Prog Biophys Mol Biol 66:227–253

    Article  PubMed  CAS  Google Scholar 

  • Bechinger B, Ruysschaert JM, Goormaghtigh E (1999) Membrane helix orientation from linear dichroism of infrared attenuated total reflection spectra. Biophys J 76:552–563

    Article  PubMed  CAS  Google Scholar 

  • Bos JL (1989) Ras oncogenes in human cancer—a review. Cancer Res 49:4682–4689

    PubMed  CAS  Google Scholar 

  • Bringezu F, Majerowicz M, Wen SY, Reuther G, Tan KT, Kuhlmann J, Waldmann H, Huster D (2007) Membrane binding of a lipidated N-Ras protein studied in lipid monolayers. Eur Biophys J 36:491–498

    Article  PubMed  CAS  Google Scholar 

  • Brunsveld L, Kuhlmann J, Alexandrov K, Wittinghofer A, Goody RS, Waldmann H (2006) Lipidated Ras and Rab peptides and proteins—synthesis, structure, and function. Angew Chem Int Edit 45:6622–6646

    Article  CAS  Google Scholar 

  • Brunsveld L, Waldmann H, Huster D (2009) Membrane binding of lipidated Ras peptides and proteins: the structural point of view. Biochim Biophys Acta Biomembr 1788:273–288

    Article  CAS  Google Scholar 

  • Chen YX, Koch S, Uhlenbrock K, Weise K, Das D, Gremer L, Brunsveld L, Wittinghofer A, Winter R, Triola G, Waldmann H (2010) Synthesis of the Rheb and K-Ras4B GTPases. Angew Chem Int Edit 49:6090–6095

    Article  CAS  Google Scholar 

  • Evers F, Jeworrek C, Weise K, Tolan M, Winter R (2012) Detection of lipid raft domains in neutral and anionic Langmuir monolayers and bilayers of complex lipid composition. Soft Matter 8:2170–2175

    Article  CAS  Google Scholar 

  • Goormaghtigh E, Raussens V, Ruysschaert JM (1999) Attenuated total reflection infrared spectroscopy of proteins and lipids in biological membranes. Biochim Biophys Acta Rev Biomembr 1422:105–185

    Article  CAS  Google Scholar 

  • Gorfe AA, Babakhani A, McCammon JA (2007a) H-Ras protein in a bilayer: interaction and structure perturbation. J Am Chem Soc 129:12280–12286

    Article  PubMed  CAS  Google Scholar 

  • Gorfe AA, Hanzal-Bayer M, Abankwa D, Hancock JF, McCammon JA (2007b) Structure and dynamics of the full-length lipid-modified H-Ras protein in a 1,2-dimyristoylglycero-3-phosphocholine bilayer. J Med Chem 50:674–684

    Article  PubMed  CAS  Google Scholar 

  • Güldenhaupt J, Adiguzel Y, Kuhlmann J, Waldmann H, Kotting C, Gerwert K (2008) Secondary structure of lipidated Ras bound to a lipid bilayer. FEBS J 275:5910–5918

    Article  PubMed  Google Scholar 

  • Hancock JF (2003) Ras proteins: different signals from different locations. Nat Rev Mol Cell Biol 4:373–384

    Article  PubMed  CAS  Google Scholar 

  • Hancock JF, Parton RG (2005) Ras plasma membrane signalling platforms. Biochem J 389:1–11

    Article  PubMed  CAS  Google Scholar 

  • Hancock JF, Paterson H, Marshall CJ (1990) A Polybasic domain or palmitoylation is required in addition to the Caax motif to localize p21 Ras to the plasma membrane. Cell 63:133–139

    Article  PubMed  CAS  Google Scholar 

  • Hancock JF, Cadwallader K, Marshall CJ (1991) Methylation and proteolysis are essential for efficient membrane binding of prenylated p21 K-Ras(B). EMBO J 10:641–646

    PubMed  CAS  Google Scholar 

  • Harrick NJ (1967) Internal reflection spectroscopy. Interscience, New York

    Google Scholar 

  • Huster D, Kuhn K, Kadereit D, Waldmann H, Arnold K (2001) H-1 high-resolution magic angle spinning NMR spectroscopy for the investigation of a Ras lipopeptide in a lipid membrane. Angew Chem Int Edit 40:1056–1058

    Article  CAS  Google Scholar 

  • Kapoor S, Werkmüller A, Denter C, Zhai Y, Markgraf J, Weise K, Opitz N, Winter R (2011) Temperature-pressure phase diagram of a heterogeneous anionic model biomembrane system: results from a combined calorimetry, spectroscopy and microscopy study. Biochim Biophys Acta Biomembr 1808:1187–1195

    Article  CAS  Google Scholar 

  • Kapoor S, Triola G, Vetter IR, Erlkamp M, Waldmann H, Winter R (2012) Revealing conformational substates of lipidated N-Ras protein by pressure modulation. Proc Natl Acad Sci USA 109:460–465

    Article  PubMed  CAS  Google Scholar 

  • Karnoub AE, Weinberg RA (2008) Ras oncogenes: split personalities. Nat Rev Mol Cell Biol 9:517–531

    Article  PubMed  CAS  Google Scholar 

  • Kuhn K, Owen DJ, Bader B, Wittinghofer A, Kuhlmann J, Waldmann H (2001) Synthesis of functional Ras lipoproteins and fluorescent derivatives. J Am Chem Soc 123:1023–1035

    Article  PubMed  CAS  Google Scholar 

  • Lewis RN, McElhaney RN (1992) Structures of the subgel phases of n-saturated diacyl phosphatidylcholine bilayers: FTIR spectroscopic studies of 13C=O and 2H labeled lipids. Biophys J 61:63–77

    Article  PubMed  CAS  Google Scholar 

  • Lukman S, Grant BJ, Gorfe AA, Grant GH, McCammon JA (2010) The distinct conformational dynamics of K-Ras and H-Ras A59G. PLoS Comput Biol 6:e1000922

    Article  PubMed  Google Scholar 

  • Marsh D (1999) Quantitation of secondary structure in ATR infrared spectroscopy. Biophys J 77:2630–2637

    Article  PubMed  CAS  Google Scholar 

  • Meister A, Nicolini C, Waldmann H, Kuhlmann J, Kerth A, Winter R, Blume A (2006) Insertion of lipidated Ras proteins into lipid monolayers studied by infrared reflection absorption spectroscopy (IRRAS). Biophys J 91:1388–1401

    Article  PubMed  CAS  Google Scholar 

  • Mendelsohn R, Mao GR, Flach CR (2010) Infrared reflection-absorption spectroscopy: principles and applications to lipid–protein interaction in Langmuir films. Biochim Biophys Acta Biomembr 1798:788–800

    Article  CAS  Google Scholar 

  • Nagele E, Schelhaas M, Kuder N, Waldmann H (1998) Chemoenzymatic synthesis of N-Ras lipopeptides. J Am Chem Soc 120:6889–6902

    Article  Google Scholar 

  • Papahadjopoulos D, Vail WJ, Pangborn WA, Poste G (1976) Studies on membrane-fusion. 2. Induction of fusion in pure phospholipid membranes by calcium ions and other divalent metals. Biochim Biophys Acta 448:265–283

    Article  PubMed  CAS  Google Scholar 

  • Prior IA, Muncke C, Parton RG, Hancock JF (2003) Direct visualization of Ras proteins in spatially distinct cell surface microdomains. J Cell Biol 160:165–170

    Article  PubMed  CAS  Google Scholar 

  • Schubbert S, Bollag G, Shannon K (2007) Deregulated Ras signalling in developmental disorders: new tricks for an old dog. Curr Opin Genet Dev 17:15–22

    Article  PubMed  CAS  Google Scholar 

  • Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39

    Article  PubMed  CAS  Google Scholar 

  • Smith SO, Kustanovich I, Bhamidipati S, Salmon A, Hamilton JA (1992) Interfacial conformation of dipalmitoylglycerol and dipalmitoylphosphatidylcholine in phospholipid bilayers. Biochemistry 31:11660–11664

    Article  PubMed  CAS  Google Scholar 

  • Tian TH, Harding A, Inder K, Plowman S, Parton RG, Hancock JF (2007) Plasma membrane nanoswitches generate high fidelity Ras signal transduction. Nat Cell Biol 9:905–960

    Article  PubMed  CAS  Google Scholar 

  • Vogel A, Reuther G, Weise K, Triola G, Nikolaus J, Tan KT, Nowak C, Herrmann A, Waldmann H, Winter R, Huster D (2009) The lipid modifications of Ras that sense membrane environments and induce local enrichment. Angew Chem Int Edit 48:8784–8787

    Article  CAS  Google Scholar 

  • Waldmann V, Rabes HM (1996) What’s new in ras genes? Physiological role of ras genes in signal transduction and significance of ras gene activation in tumorigenesis. Pathol Res Pract 192:883–891

    Article  PubMed  CAS  Google Scholar 

  • Walsh AB, Bar-Sagi D (2001) Differential activation of the pac pathway by Ha-Ras and K-Ras. J Biol Chem 276:15609–15615

    Article  PubMed  CAS  Google Scholar 

  • Weise K, Triola G, Brunsveld L, Waldmann H, Winter R (2009) Influence of the lipidation motif on the partitioning and association of N-Ras in model membrane subdomains. J Am Chem Soc 131:1557–1564

    Article  PubMed  CAS  Google Scholar 

  • Weise K, Kapoor S, Denter C, Nikolaus J, Opitz N, Koch S, Triola G, Herrmann A, Waldmann H, Winter R (2011) Membrane-mediated induction and sorting of K-Ras microdomain signalling platforms. J Am Chem Soc 133:880–887

    Article  PubMed  CAS  Google Scholar 

  • Willumsen BM, Christensen A, Hubbert NL, Papageorge AG, Lowy DR (1984) The p21 Ras C-terminus is required for transformation and membrane association. Nature 310:583–586

    Article  PubMed  CAS  Google Scholar 

  • Wittebort RJ, Schmidt CF, Griffin RG (1981) Solid-state C-13 nuclear magnetic-resonance of the lecithin gel to liquid-crystalline phase-transition. Biochemistry 20:4223–4228

    Article  PubMed  CAS  Google Scholar 

  • Wittinghofer A, Pai EF (1991) The structure of Ras protein—a model for a universal molecular switch. Trends Biochem Sci 16:382–387

    Article  PubMed  CAS  Google Scholar 

  • Wittinghofer A, Waldmann H (2000) Ras—a molecular switch involved in tumor formation. Angew Chem Int Edit 39:4193–4214

    Google Scholar 

  • Yan J, Roy S, Apolloni A, Lane A, Hancock JF (1998) Ras isoforms vary in their ability to activate Raf-1 and phosphoinositide 3-kinase. J Biol Chem 273:24052–24056

    Article  PubMed  CAS  Google Scholar 

  • Zhai Y, Okoro L, Cooper A, Winter R (2011) Applications of pressure perturbation calorimetry in biophysical studies. Biophys Chem 156:13–23

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Deutsche Forschungsgemeinschaft (DFG, SFB 642) and the International Max Planck Research School (IMPRS). We are grateful to Christine Nowak for technical assistance. Furthermore, we thank Dr Andreas Kerth, Dr Annette Meister, and Professor Alfred Blume (all Martin-Luther-Universität Halle-Wittenberg, Germany) and Dr Andrea Gohlke for their help in setting up the IRRAS measurements in our laboratory. Finally, RW wants to thank Professor Dr Peter Laggner, to whom this work is dedicated, for many stimulating discussions in various fields of membrane biophysics over the years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Winter.

Additional information

Special Issue: Scattering techniques in biology—marking the contributions to the field of Peter Laggner, on the occasion of his 68th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kapoor, S., Weise, K., Erlkamp, M. et al. The role of G-domain orientation and nucleotide state on the Ras isoform-specific membrane interaction. Eur Biophys J 41, 801–813 (2012). https://doi.org/10.1007/s00249-012-0841-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-012-0841-5

Keywords

Navigation