, Volume 36, Issue 4-5, pp 265-279
Date: 07 Nov 2006

Water near lipid membranes as seen by infrared spectroscopy

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The ordering and H-bonding characteristics of the hydration water of the lipid 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) were studied using polarized infrared spectroscopy by varying either the temperature or the relative humidity of the ambient atmosphere of multibilayer samples. The OH-stretching band of lipid-bound water was interpreted by a simplified two-state model of well-structured, low density “network” water and of less-structured dense “multimer” water. The IR-spectroscopic data reflect a rather continuous change of the water properties with increasing distance from the membrane and with changing temperature. Network and multimer water distribute across the whole polar interphase with changing composition and orientation. Upon dehydration the fraction of network water increases from about 30 to 60%, a value which is similar to that in supercooled water at −25°C. The highly ordered gel phase gives rise to an increased fraction of structured network water compared with the liquid crystalline phase. The IR order parameter shows that the water dipoles rearrange from a more parallel towards a more perpendicular orientation with respect to the membrane normal with progressive hydration.

Dedicated to Prof. K. Arnold on the occasion of his 65th birthday.