Skip to main content
Log in

Symbiont Diversity of Aphis (Toxoptera) citricidus (Hemiptera: Aphididae) as Influenced by Host Plants

  • Invertebrate Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Aphids are well known for their association with endosymbiont bacteria. Almost all aphids harbor Buchnera aphidicola as an obligate symbiont and several other bacteria as facultative symbionts. Associations of facultative symbionts and aphids are quite variable in terms of diversity and prevalence across aphid species. Facultative symbionts can have a major impact on aphid bioecological traits. A number of factors shape the outcome of the facultative symbiont-aphid association, including aphid clone, bacterial genotype, geography, and host plant association. The effects of host plant on aphid-facultative symbiont associations are the least understood. We performed deep sequencing of the bacterial community associated with field populations of the oligophagous aphid Aphis (Toxoptera) citricidus collected from different host plants. We demonstrate that (i) A. citricidus has low symbiont diversity, (ii) symbiont diversity is affected by host plant, and (iii) host plants affect the relative abundance of the obligate symbiont Buchnera and an unknown genus of Enterobacteriaceae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Moran NA, McCutcheon JP, Nakabachi A (2008) Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 42(1):165–190

    Article  CAS  PubMed  Google Scholar 

  2. Douglas AE (1998) Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu Rev Entomol 43:17–37

    Article  CAS  PubMed  Google Scholar 

  3. Douglas AE (2009) The microbial dimension in insect nutritional ecology. Funct Ecol 23(1):38–47

    Article  Google Scholar 

  4. Hansen AK, Moran NA (2014) The impact of microbial symbionts on host plant utilization by herbivorous insects. Mol Ecol 23(6):1473–1496

    Article  PubMed  Google Scholar 

  5. Oliver KM, Moran NA, Hunter MS (2005) Variation in resistance to parasitism in aphids is due to symbionts not host genotype. Proc Natl Acad Sci U S A 102(36):12795–12800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Oliver KM, Noge K, Huang EM, Campos JM, Becerra JX, Hunter MS (2012) Parasitic wasp responses to symbiont-based defense in aphids. BMC Biol 10:11

    Article  PubMed  PubMed Central  Google Scholar 

  7. Oliver KM, Russell JA, Moran NA, Hunter MS (2003) Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc Natl Acad Sci U S A 100(4):1803–1807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Oliver KM, Campos J, Moran NA, Hunter MS (2008) Population dynamics of defensive symbionts in aphids. Proc Biol Sci R Soc 275(1632):293–299

    Article  Google Scholar 

  9. Montllor CB, Maxmen A, Purcell AH (2002) Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecol Entomol 27(2):189–195

    Article  Google Scholar 

  10. Scarborough CL, Ferrari J, Godfray HC (2005) Aphid protected from pathogen by endosymbiont. Science 310(5755):1781

    Article  CAS  PubMed  Google Scholar 

  11. Łukasik P, van Asch M, Guo H, Ferrari J, Charles J, Godfray H (2013) Unrelated facultative endosymbionts protect aphids against a fungal pathogen. Ecol Lett 16(2):214–218

    Article  PubMed  Google Scholar 

  12. Su Q, Zhou X, Zhang Y (2013) Symbiont-mediated functions in insect hosts. Commun Integr Biol 6(3):e23804

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tsuchida T, Koga R, Fujiwara A, Fukatsu T (2014) Phenotypic effect of “Candidatus Rickettsiella viridis,” a facultative symbiont of the pea aphid (Acyrthosiphon pisum), and its interaction with a coexisting symbiont. Appl Environ Microbiol 80(2):525–533

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tsuchida T, Koga R, Horikawa M, Tsunoda T, Maoka T, Matsumoto S, Simon JC, Fukatsu T (2010) Symbiotic bacterium modifies aphid body color. Science 330:1102–1104

    Article  CAS  PubMed  Google Scholar 

  15. Fukatsu T, Tsuchida T, Nikoh N, Koga R (2001) Spiroplasma symbiont of the pea aphid, Acyrthosiphon pisum (Insecta: Homoptera). Appl Environ Microbiol 67(3):1284–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tsuchida T, Koga R, Shibao H, Matsumoto T, Fukatsu T (2002) Diversity and geographic distribution of secondary endosymbiotic bacteria in natural populations of the pea aphid, Acyrthosiphon pisum. Mol Ecol 11(10):2123–2135

    Article  CAS  PubMed  Google Scholar 

  17. Haynes S, Darby AC, Daniell TJ, Webster G, Van Veen FJ, Godfray HC, Prosser JI, Douglas AE (2003) Diversity of bacteria associated with natural aphid populations. Appl Environ Microbiol 69(12):7216–7223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Burke GR, Normark BB, Favret C, Moran NA (2009) Evolution and diversity of facultative symbionts from the aphid subfamily Lachninae. Appl Environ Microbiol 75(16):5328–5335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Clark EL, Daniell TJ, Wishart J, Hubbard SF, Karley AJ (2012) How conserved are the bacterial communities associated with aphids? A detailed assessment of the Brevicoryne brassicae (Hemiptera: Aphididae) using 16S rDNA. Environ Entomol 41(6):1386–1397

    Article  CAS  PubMed  Google Scholar 

  20. Sevim E, Çelebi Ö, Sevim A (2012) Determination of the bacterial flora as a microbial control agent of Toxoptera aurantii (Homoptera: Aphididae). Biologia 67(2):397–404

    Article  Google Scholar 

  21. Brady CM, Asplen MK, Desneux N, Heimpel GE, Hopper KR, Linnen CR, Oliver KM, Wulff JA, White JA (2014) Worldwide populations of the aphid Aphis craccivora are infected with diverse facultative bacterial symbionts. Microb Ecol 67(1):195–204

    Article  PubMed  Google Scholar 

  22. Ferrari J, West JA, Via S, Godfray HC (2012) Population genetic structure and secondary symbionts in host-associated populations of the pea aphid complex. Evol Int J Org Evol 66(2):375–390

    Article  Google Scholar 

  23. Russell JA, Weldon S, Smith AH, Kim KL, Hu Y, Lukasik P, Doll S, Anastopoulos I, Novin M, Oliver KM (2013) Uncovering symbiont-driven genetic diversity across North American pea aphids. Mol Ecol 22(7):2045–2059

    Article  PubMed  Google Scholar 

  24. Henry LM, Peccoud J, Simon JC, Hadfield JD, Maiden MJ, Ferrari J, Godfray HC (2013) Horizontally transmitted symbionts and host colonization of ecological niches. Curr Biol 23(17):1713–1717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. McLean AHC, van Asch M, Ferrari J, Godfray HCJ (2011) Effects of bacterial secondary symbionts on host plant use in pea aphids. Proc R Soc B Biol Sci 278(1706):760–766

    Article  CAS  Google Scholar 

  26. Via S (1991) Specialized host plant performance of pea aphid clones is not altered by experience. Ecology 72(4):1420–1427

    Article  Google Scholar 

  27. Leonardo TE, Muiru GT (2003) Facultative symbionts are associated with host plant specialization in pea aphid populations. Proc R Soc B Biol Sci 270:209–212

    Article  Google Scholar 

  28. Tsuchida T, Koga R, Fukatsu T (2004) Host plant specialization governed by facultative symbiont. Science 303(5666):1989

    Article  CAS  PubMed  Google Scholar 

  29. Leonardo TE (2004) Removal of a specialization-associated symbiont does not affect aphid fitness. Ecol Lett 7(6):461–468

    Article  Google Scholar 

  30. Brady CM, White JA (2013) Cowpea aphid (Aphis craccivora) associated with different host plants has different facultative endosymbionts. Ecol Entomol 38(4):433–437

    Article  Google Scholar 

  31. Michaud JP (1998) A review of the literature on Toxoptera citricida (Kirkaldy) (Homoptera : Aphididae). Fla Entomol 81(1):37–61

    Article  Google Scholar 

  32. Halbert SE, Brown LG (1996) Toxoptera citricida (Kirkaldy), brown citrus aphid—identification, biology and management strategies. Fla Dep Agric Consum Serv Div Plant Ind Entomol Circ 374:6

    Google Scholar 

  33. Sunnucks P, De Barro PJ, Lushai G, Maclean N, Hales D (1997) Genetic structure of an aphid studied using microsatellites: cyclic parthenogenesis, differentiated lineages and host specialization. Mol Ecol 6(11):1059–1073

    Article  CAS  PubMed  Google Scholar 

  34. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Russell JA, Latorre A, Sabater-Munoz B, Moya A, Moran NA (2003) Side-stepping secondary symbionts: widespread horizontal transfer across and beyond the Aphidoidea. Mol Ecol 12(4):1061–1075

    Article  CAS  PubMed  Google Scholar 

  37. Ferrari J, Darby AC, Daniell TJ, Godfray HCJ, Douglas AE (2004) Linking the bacterial community in pea aphids with host-plant use and natural enemy resistance. Ecol Entomol 29(1):60–65

    Article  Google Scholar 

  38. Jones RT, Bressan A, Greenwell AM, Fierer N (2011) Bacterial communities of two parthenogenetic aphid species cocolonizing two host plants across the Hawaiian Islands. Appl Environ Microbiol 77(23):8345–8349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Russell JA, Moran NA (2006) Costs and benefits of symbiont infection in aphids: variation among symbionts and across temperatures. Proc Biol Sci R Soc 273(1586):603–610

    Article  Google Scholar 

  40. Guay JF, Boudreault S, Michaud D, Cloutier C (2009) Impact of environmental stress on aphid clonal resistance to parasitoids: role of Hamiltonella defensa bacterial symbiosis in association with a new facultative symbiont of the pea aphid. J Insect Physiol 55(10):919–926

    Article  CAS  PubMed  Google Scholar 

  41. Nyabuga FN, Outreman Y, Simon J-C, Heckel DG, Weisser WW (2010) Effects of pea aphid secondary endosymbionts on aphid resistance and development of the aphid parasitoid Aphidius ervi: a correlative study. Entomol Exp Appl 136(3):243–253

    Google Scholar 

  42. Leonardo TE, Mondor EB (2006) Symbiont modifies host life-history traits that affect gene flow. Proc Biol Sci R Soc 273(1590):1079–1084

    Article  CAS  Google Scholar 

  43. Werren JH, Baldo L, Clark M (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6(10):741–751

    Article  CAS  PubMed  Google Scholar 

  44. Jeyaprakash A, Hoy MA (2000) Long PCR improves Wolbachia DNA amplification: wsp sequences found in 76% of sixty-three arthropod species. Insect Mol Biol 9(4):393–405

    Article  CAS  PubMed  Google Scholar 

  45. Gomez-Valero L, Soriano-Navarro M, Perez-Brocal V, Heddi A, Moya A, Garcia-Verdugo JM, Latorre A (2004) Coexistence of Wolbachia with Buchnera aphidicola and a secondary symbiont in the aphid Cinara cedri. J Bacteriol 186(19):6626–6633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang Z, Shen Z-R, Song Y, Liu H-Y, Li Z-X (2009) Distribution and diversity of Wolbachia in different populations of the wheat aphid Sitobion miscanthi (Hemiptera: Aphididae) in China. Eur J Entomol 106(1):49–55

    Article  CAS  Google Scholar 

  47. Augustinos AA, Santos-Garcia D, Dionyssopoulou E, Moreira M, Papapanagiotou A, Scarvelakis M, Doudoumis V, Ramos S, Aguiar AF, Borges PAV et al (2011) Detection and characterization of Wolbachia infections in natural populations of aphids: is the hidden diversity fully unraveled? PLoS One 6(12):e28695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wagner SM, Martinez AJ, Ruan Y-M, Kim KL, Lenhart PA, Dehnel AC, Oliver KM, White JA (2015) Facultative endosymbionts mediate dietary breadth in a polyphagous herbivore. Funct Ecol 29(11):1402–1410

    Article  Google Scholar 

  49. Gauthier J-P, Outreman Y, Mieuzet L, Simon J-C (2015) Bacterial communities associated with host-adapted populations of pea aphids revealed by deep sequencing of 16S ribosomal DNA. PLoS One 10(3):e0120664

    Article  PubMed  PubMed Central  Google Scholar 

  50. Najar-Rodriguez AL, McGraw EA, Mensah RK, Pittman GW, Walter GH (2009) The microbial flora of Aphis gossypii: patterns across host plants and geographical space. J Invertebr Pathol 100(2):123–126

    Article  PubMed  Google Scholar 

  51. Toju H, Fukatsu T (2011) Diversity and infection prevalence of endosymbionts in natural populations of the chestnut weevil: relevance of local climate and host plants. Mol Ecol 20(4):853–868

    Article  PubMed  Google Scholar 

  52. Zytynska SE, Weisser WW (2016) The natural occurrence of secondary bacterial symbionts in aphids. Ecol Entomol 41(1):13–26

    Article  Google Scholar 

  53. Tsai JH (1998) Development, survivorship, and reproduction of Toxoptera citricida (Kirkaldy) (Homoptera : Aphididae) on eight host plants. Environ Entomol 27(5):1190–1195

    Article  Google Scholar 

  54. Michaud JP (2004) Assessment of cotton as an alternative host plant for the brown citrus aphid, Toxoptera citricida (Homoptera : Aphididae). Fla Entomol 87(2):105–111

    Article  Google Scholar 

  55. Federici CT, Fang DQ, Scora RW, Roose ML (1998) Phylogenetic relationships within the genus Citrus (Rutaceae) and related genera as revealed by RFLP and RAPD analysis. Theor Appl Genet 96(6–7):812–822

    Article  CAS  Google Scholar 

  56. Nicolosi E, Deng ZN, Gentile A, La Malfa S, Continella G, Tribulato E (2000) Citrus phylogeny and genetic origin of important species as investigated by molecular markers. Theor Appl Genet 100(8):1155–1166

    Article  CAS  Google Scholar 

  57. Barkley NA, Roose ML, Krueger RR, Federici CT (2006) Assessing genetic diversity and population structure in a citrus germplasm collection utilizing simple sequence repeat markers (SSRs). Theor Appl Genet 112(8):1519–1531

    Article  CAS  PubMed  Google Scholar 

  58. Pang X-M, Hu C-G, Deng X-X (2007) Phylogenetic relationships within Citrus and its related genera as inferred from AFLP markers. Genet Resour Crop Evol 54(2):429–436

    Article  CAS  Google Scholar 

  59. Carbonell-Caballero J, Alonso R, Ibanez V, Terol J, Talon M, Dopazo J (2015) A phylogenetic analysis of 34 chloroplast genomes elucidates the relationships between wild and domestic species within the genus citrus. Mol Biol Evol 32(8):2015–2035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Froelicher Y, Mouhaya W, Bassene J-B, Costantino G, Kamiri M, Luro F, Morillon R, Ollitrault P (2011) New universal mitochondrial PCR markers reveal new information on maternal citrus phylogeny. Tree Genet Genomes 7(1):49–61

    Article  Google Scholar 

  61. Federici CT, Roose ML, Scora RW (2000) RFLP analysis of the origin of Citrus bergamia, Citrus jambhiri, and Citrus limonia. Proc First Int Symp Citrus Biotechnol 535:55–62

    CAS  Google Scholar 

  62. Gosalbes MJ, Latorre A, Lamelas A, Moya A (2010) Genomics of intracellular symbionts in insects. Int J Med Microbiol 300(5):271–278

    Article  CAS  PubMed  Google Scholar 

  63. Koga R, Tsuchida T, Fukatsu T (2003) Changing partners in an obligate symbiosis: a facultative endosymbiont can compensate for loss of the essential endosymbiont Buchnera in an aphid. Proc Biol Sci R Soc 270(1533):2543–2550

    Article  Google Scholar 

  64. Sakurai M, Koga R, Tsuchida T, Meng XY, Fukatsu T (2005) Rickettsia symbiont in the pea aphid Acyrthosiphon pisum: novel cellular tropism, effect on host fitness, and interaction with the essential symbiont Buchnera. Appl Environ Microbiol 71(7):4069–4075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Myers SP (2004) The causes of intestinal dysbiosis: a review. Altern Med Rev 9(2):180–197

    PubMed  Google Scholar 

  66. Hamdi C, Balloi A, Essanaa J, Crotti E, Gonella E, Raddadi N, Ricci I, Boudabous A, Borin S, Manino A et al (2011) Gut microbiome dysbiosis and honeybee health. J Appl Entomol 135(7):524–533

    Article  Google Scholar 

  67. Minard G, Mavingui P, Moro CV (2013) Diversity and function of bacterial microbiota in the mosquito holobiont. Parasit Vectors 6(146):1–12

    Google Scholar 

  68. Ma D, Storelli G, Mitchell M, Leulier F (2015) Studying host-microbiota mutualism in Drosophila: harnessing the power of gnotobiotic flies. Biomed J 38(4):285–293

    Article  PubMed  Google Scholar 

  69. Cassone BJ, Redinbaugh MG, Dorrance AE, Michel AP (2015) Shifts in Buchnera aphidicola density in soybean aphids (Aphis glycines) feeding on virus-infected soybean. Insect Mol Biol 24(4):422–431

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors thank FAPESP by providing a PhD fellowship to ASG (Grant # 2012/04287-0, São Paulo Research Foundation). Authors also thank CNPq (Grant # 490474/2011-0) and FAPESP (Grant # 2011/50877-0, São Paulo Research Foundation) for providing research funds to the senior author FLC. Authors are also thankful to Prof. Celso Omoto for allowing the use of a Workstation and MSc. Antonio Rogerio B do Nascimento for providing assistance with software implementation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Luis Cônsoli.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 19 kb)

ESM 2

(DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guidolin, A.S., Cônsoli, F.L. Symbiont Diversity of Aphis (Toxoptera) citricidus (Hemiptera: Aphididae) as Influenced by Host Plants. Microb Ecol 73, 201–210 (2017). https://doi.org/10.1007/s00248-016-0892-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-016-0892-8

Keywords

Navigation