Skip to main content

Advertisement

Log in

Diversity of Fungi on Decomposing Leaf Litter in a Sugarcane Plantation and Their Response to Tillage Practice and Bagasse Mulching: Implications for Management Effects on Litter Decomposition

  • Fungal Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

To minimize the degradation of soil organic matter (SOM) content in conventional sugarcane cropping, it is important to understand how the fungal community contributes to SOM dynamics during the decomposition of sugarcane leaf litter. However, our knowledge of fungal diversity in tropical agroecosystems is currently limited. Thus, we determined the fungal community structure on decomposing sugarcane leaf litter and their response to different soil management systems using the internal transcribed spacer region 1 (ITS1) amplicon sequencing method afforded by Ion Torrent Personal Genome Machine (PGM). The results indicate that no-tillage had positive effects on the relative abundance of Zygomycota and of some taxa that may prefer a moist environment over conventional tillage, whereas bagasse mulching decreased the richness of operational taxonomic units (OTUs) and had positive effect on the relative abundance of slow-growing taxa, which may prefer poor nutrient substrates. Furthermore, a combination of no-tillage and bagasse mulching increased the abundance of unique OTUs. We suggest that the alteration of fungal communities through the changes in soil management practices produces an effect on litter decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. FAO. (2008). Biofuels: prospects, risks and opportunities. FAO Agriculture Series (Vol. 39.). Rome: Food and Agriculture Organization of the United Nations (FAO)

  2. FAO (2014) FAOSTAT online statistical service. Food and Agriculture Organization of the United Nations (FAO), Rome

    Google Scholar 

  3. Bonde TA, Christensen BT, Cerri CC (1992) Dynamics of soil organic matter as reflected by natural 13C abundance in particle size fractions of forested and cultivated oxisols. Soil Biol Biochem 24(3):275–277. doi:10.1016/0038-0717(92)90230-U

    Article  CAS  Google Scholar 

  4. Hartemink AE (1998) Soil chemical and physical properties as indicators of sustainable land management under sugar cane in Papua New Guinea. Geoderma 85(4):283–306. doi:10.1016/S0016-7061(98)00048-2

    Article  CAS  Google Scholar 

  5. Dominy C, Haynes R (2002) Influence of agricultural land management on organic matter content, microbial activity and aggregate stability in the profiles of two Oxisols. Biol Fertil Soils 36(4):298–305. doi:10.1007/s00374-002-0542-9

    Article  CAS  Google Scholar 

  6. Osher LJ, Matson PA, Amundson R (2003) Effect of land use change on soil carbon in Hawaii. Biogeochemistry 65(2):213–232. doi:10.1023/A:1026048612540

    Article  CAS  Google Scholar 

  7. Galdos MV, Cerri CC, Cerri CEP (2009) Soil carbon stocks under burned and unburned sugarcane in Brazil. Geoderma 153(3–4):347–352. doi:10.1016/j.geoderma.2009.08.025

    Article  CAS  Google Scholar 

  8. Stirling GR, Moody PW, Stirling AM (2010) The impact of an improved sugarcane farming system on chemical, biochemical and biological properties associated with soil health. Appl Soil Ecol 46(3):470–477. doi:10.1016/j.apsoil.2010.08.015

    Article  Google Scholar 

  9. Machado PLOA, Silva CA (2001) Soil management under no-tillage systems in the tropics with special reference to Brazil. Nutr Cycl Agroecosyst 61(1–2):119–130. doi:10.1023/A:1013331805519

    Article  Google Scholar 

  10. Jiménez JJ, Lal R (2006) Mechanisms of C sequestration in soils of Latin America. Crit Rev Plant Sci 25(4):337–365. doi:10.1080/0735268060094240

    Article  Google Scholar 

  11. Neto MS, Scopel E, Corbeels M, Cardoso AN, Douzet J-M, Feller C, Bernoux M (2010) Soil carbon stocks under no-tillage mulch-based cropping systems in the Brazilian Cerrado: an on-farm synchronic assessment. Soil Tillage Res 110(1):187–195. doi:10.1016/j.still.2010.07.010

    Article  Google Scholar 

  12. Conant RT, Easter M, Paustian K, Swan A, Williams S (2007) Impacts of periodic tillage on soil C stocks: a synthesis. Soil Tillage Res 95(1–2):1–10. doi:10.1016/j.still.2006.12.006

    Article  Google Scholar 

  13. Six J, Feller C, Denef K, Ogle SM, de Moraes JC, Albrecht A (2002) Soil organic matter, biota and aggregation in temperate and tropical soils—effects of no-tillage. Agronomie 22(7–8):755–775. doi:10.1051/agro:2002043

    Article  Google Scholar 

  14. Taja H, Vanderzaag P (1991) Organic residue management in the hot tropics: influence on the growth and yield of Solanum potato and maize. Trop Agric 68(2):111–118

    Google Scholar 

  15. Scopel E, Findeling A, Guerra EC, Corbeels M (2005) Impact of direct sowing mulch-based cropping systems on soil carbon, soil erosion and maize yield. Agron Sustain Dev 25(4):425–432. doi:10.1051/agro:2005041

    Article  CAS  Google Scholar 

  16. Singh P, Suman A, Tiwari P, Arya N, Gaur A, Shrivastava AK (2007) Biological pretreatment of sugarcane trash for its conversion to fermentable sugars. World J Microbiol Biotechnol 24(5):667–673. doi:10.1007/s11274-007-9522-4

    Article  Google Scholar 

  17. Deacon LJ, Janie Pryce-Miller E, Frankland JC, Bainbridge BW, Moore PD, Robinson CH (2006) Diversity and function of decomposer fungi from a grassland soil. Soil Biol Biochem 38(1):7–20. doi:10.1016/j.soilbio.2005.04.013

    Article  CAS  Google Scholar 

  18. Miura T, Niswati A, Swibawa IG, Haryani S, Gunito H, Kaneko N (2013) No tillage and bagasse mulching alter fungal biomass and community structure during decomposition of sugarcane leaf litter in Lampung Province, Sumatra, Indonesia. Soil Biol Biochem 58:27–35. doi:10.1016/j.soilbio.2012.10.042

    Article  CAS  Google Scholar 

  19. Metzker ML (2010) Sequencing technologies—the next generation. Nature reviews. Genetics 11(1):31–46. doi:10.1038/nrg2626

    CAS  PubMed  Google Scholar 

  20. Driessen P, Deckers J, Spaargaren O, Nachtergaele F (2001) In world soil resources reports 2000. Food and Agriculture Organization (FAO), Rome, Lecture notes on the major soils of the world

    Google Scholar 

  21. Frostegård Å, Tunlid A, Bååth E (1991) Microbial biomass measured as total lipid phosphate in soils of different organic content. J Microbiol Methods 14(3):151–163. doi:10.1016/0167-7012(91)90018-L

    Article  Google Scholar 

  22. Niwa S, Kaneko N, Okada H, Sakamoto K (2008) Effects of fine-scale simulation of deer browsing on soil micro-foodweb structure and N mineralization rate in a temperate forest. Soil Biol Biochem 40(3):699–708. doi:10.1016/j.soilbio.2007.10.004

    Article  CAS  Google Scholar 

  23. Frostegård Å, Tunlid A, Bååth E (2011) Use and misuse of PLFA measurements in soils. Soil Biol Biochem 43(8):1621–1625. doi:10.1016/j.soilbio.2010.11.021

    Article  Google Scholar 

  24. Toju H, Tanabe AS, Yamamoto S, Sato H (2012) High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS ONE 7(7), e40863. doi:10.1371/journal.pone.0040863

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS ONE 6(12), e27310. doi:10.1371/journal.pone.0027310

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16):2194–2200. doi:10.1093/bioinformatics/btr381

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Gihring TM, Green SJ, Schadt CW (2012) Massively parallel rRNA gene sequencing exacerbates the potential for biased community diversity comparisons due to variable library sizes. Environ Microbiol 14(2):285–290. doi:10.1111/j.1462-2920.2011.02550.x

    Article  CAS  PubMed  Google Scholar 

  28. Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48(3):443–453. doi:10.1016/0022-2836(70)90057-4

    Article  CAS  PubMed  Google Scholar 

  29. Tedersoo L, Nilsson RH, Abarenkov K, Jairus T, Sadam A, Saar I, Kõljalg U (2010) 454 pyrosequencing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases. New Phytol 188(1):291–301. doi:10.1111/j.1469-8137.2010.03373.x

    Article  CAS  PubMed  Google Scholar 

  30. Abarenkov K, Henrik Nilsson R, Larsson K-H, Alexander IJ, Eberhardt U, Erland S, Kõljalg U (2010) The UNITE database for molecular identification of fungi—recent updates and future perspectives. New Phytol 186(2):281–285. doi:10.1111/j.1469-8137.2009.03160.x

    Article  PubMed  Google Scholar 

  31. Smith B, Wilson JB (1996) A consumer’s guide to evenness indices. Oikos 76(1):70. doi:10.2307/3545749

    Article  Google Scholar 

  32. R Development Core Team (2009) A language and environment for statistical computing

    Google Scholar 

  33. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26(1):32–46. doi:10.1111/j.1442-9993.2001.01070.pp.x

    Google Scholar 

  34. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB (2013) Helene Wagner. Vegan: Community Ecology Package

  35. Dickie IA, FitzJohn RG (2007) Using terminal restriction fragment length polymorphism (T-RFLP) to identify mycorrhizal fungi: a methods review. Mycorrhiza 17(4):259–270. doi:10.1007/s00572-007-0129-2

    Article  CAS  PubMed  Google Scholar 

  36. Van Elsas JD, Boersma FGH (2011) A review of molecular methods to study the microbiota of soil and the mycosphere. Eur J Soil Biol 47(2):77–87. doi:10.1016/j.ejsobi.2010.11.010

    Article  Google Scholar 

  37. Anderson IC, Cairney JWG (2004) Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Environ Microbiol 6(8):769–779. doi:10.1111/j.1462-2920.2004.00675.x

    Article  CAS  PubMed  Google Scholar 

  38. Žifčáková L, Baldrian P (2012) Fungal polysaccharide monooxygenases: new players in the decomposition of cellulose. Fungal Ecol 5(5):481–489. doi:10.1016/j.funeco.2012.05.001

    Article  Google Scholar 

  39. Nakasone KK (2007) Morphological and molecular studies on Resinicium s. str. Can J Bot 85(4):420–436. doi:10.1139/B07-035

    Article  CAS  Google Scholar 

  40. Shrestha P, Szaro TM, Bruns TD, Taylor JW (2011) Systematic search for cultivatable fungi that best deconstruct cell walls of Miscanthus and sugarcane in the field. Appl Environ Microbiol 77(15):5490–5504. doi:10.1128/AEM.02996-10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Promputtha I, Lumyong S, Dhanasekaran V, McKenzie EHC, Hyde KD, Jeewon R (2007) A phylogenetic evaluation of whether endophytes become saprotrophs at host senescence. Microb Ecol 53(4):579–590. doi:10.1007/s00248-006-9117-x

    Article  PubMed  Google Scholar 

  42. Chandel AK, da Silva SS, Carvalho W, Singh OV (2012) Sugarcane bagasse and leaves: foreseeable biomass of biofuel and bio-products. J Chem Technol Biotechnol 87(1):11–20. doi:10.1002/jctb.2742

    Article  CAS  Google Scholar 

  43. Coûteaux M-M, Mousseau M, Célérier M-L, Bottner P, Couteaux M-M, Celerier M-L (1991) Increased atmospheric CO2 and litter quality: decomposition of sweet chestnut leaf litter with animal food webs of different complexities. Oikos 61(1):54. doi:10.2307/3545406

    Article  Google Scholar 

  44. Jiménez DJ, Korenblum E, van Elsas JD (2014) Novel multispecies microbial consortia involved in lignocellulose and 5-hydroxymethylfurfural bioconversion. Appl Microbiol Biotechnol 98(6):2789–2803. doi:10.1007/s00253-013-5253-7

    Article  PubMed  Google Scholar 

  45. Herrera J, Poudel R, Nebel KA, Collins SL (2011) Precipitation increases the abundance of some groups of root-associated fungal endophytes in a semiarid grassland. Ecosphere 2(4):1–14. doi:10.1890/ES11-00001.1

    Article  Google Scholar 

  46. Kjøller A, Struwe S (2002) Fungal communities, succession, enzymes, and decomposition. In: Burns RG, Dick RP (eds) Enzymes in the environment: activity, ecology, and applications, vol 4. Marcel Dekker, New York, pp 267–284

    Google Scholar 

  47. Verkley GJM, Dukik K, Renfurm R, Göker M, Stielow JB (2014) Novel genera and species of coniothyrium-like fungi in Montagnulaceae (Ascomycota). Persoonia 32:25–51. doi:10.3767/003158514X679191

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Morakotkarn D, Kawasaki H, Seki T (2007) Molecular diversity of bamboo-associated fungi isolated from Japan. FEMS Microbiol Lett 266(1):10–19. doi:10.1111/j.1574-6968.2006.00489.x

    Article  CAS  PubMed  Google Scholar 

  49. Germain H, Laflamme G, Bernier L, Boulet B, Hamelin RC (2002) DNA polymorphism and molecular diagnosis in Inonotus spp. Can J Plant Pathol 24(2):194–199. doi:10.1080/07060660309506995

    Article  CAS  Google Scholar 

  50. Zeng H, Tan F, Zhang Y, Feng Y, Shu Y, Wang J (2014) Effects of cultivation and return of Bacillus thuringiensis (Bt) maize on the diversity of the arbuscular mycorrhizal community in soils and roots of subsequently cultivated conventional maize. Soil Biol Biochem 75:254–263. doi:10.1016/j.soilbio.2014.04.024

    Article  CAS  Google Scholar 

  51. Arhipova N, Gaitnieks T, Donis J, Stenlid J, Vasaitis R (2012) Heart-rot and associated fungi in Alnus glutinosa stands in Latvia. Scand J For Res 27(4):327–336. doi:10.1080/02827581.2012.670727

    Article  Google Scholar 

  52. Nakasone KK (1984) Taxonomy of Crustoderma (Aphyllophorales, Corticiaceae). Mycologia 76(1):40. doi:10.2307/3792834

    Article  Google Scholar 

  53. Kivlin SN, Hawkes CV (2011) Differentiating between effects of invasion and diversity: impacts of aboveground plant communities on belowground fungal communities. New Phytol 189(2):526–535. doi:10.1111/j.1469-8137.2010.03494.x

    Article  PubMed  Google Scholar 

  54. Miller AN, Huhndorf SM (2004) Using phylogenetic species recognition to delimit species boundaries within Lasiosphaeria. Mycologia 96(5):1106–1127

    Article  CAS  PubMed  Google Scholar 

  55. Oliveira SF, Bocayuva MF, Veloso TGR, Bazzolli DMS, da Silva CC, Pereira OL, Kasuya MCM (2014) Endophytic and mycorrhizal fungi associated with roots of endangered native orchids from the Atlantic Forest, Brazil. Mycorrhiza 24(1):55–64. doi:10.1007/s00572-013-0512-0

    Article  CAS  PubMed  Google Scholar 

  56. U’ren JM, Dalling JW, Gallery RE, Maddison DR, Davis EC, Gibson CM, Arnold AE (2009) Diversity and evolutionary origins of fungi associated with seeds of a neotropical pioneer tree: a case study for analysing fungal environmental samples. Mycol Res 113(4):432–449. doi:10.1016/j.mycres.2008.11.015

    Article  PubMed  Google Scholar 

  57. Rodrigues A, Mueller UG, Ishak HD, Bacci M, Pagnocca FC (2011) Ecology of microfungal communities in gardens of fungus-growing ants (Hymenoptera: Formicidae): a year-long survey of three species of attine ants in Central Texas. FEMS Microbiol Ecol 78(2):244–255. doi:10.1111/j.1574-6941.2011.01152.x

    Article  CAS  PubMed  Google Scholar 

  58. Rodrigues A, Passarini MRZ, Ferro M, Nagamoto NS, Forti LC, Bacci M, Pagnocca FC (2014) Fungal communities in the garden chamber soils of leaf-cutting ants. J Basic Microbiol 54(11):1186–1196. doi:10.1002/jobm.201200458

    Article  CAS  PubMed  Google Scholar 

  59. Grantina-Ievina L, Andersone U, Berkolde-Pīre D, Nikolajeva V, Ievinsh G (2013) Critical tests for determination of microbiological quality and biological activity in commercial vermicompost samples of different origins. Appl Microbiol Biotechnol 97(24):10541–10554. doi:10.1007/s00253-013-4825-x

    Article  CAS  PubMed  Google Scholar 

  60. Higginbotham SJ, Arnold AE, Ibañez A, Spadafora C, Coley PD, Kursar TA (2013) Bioactivity of fungal endophytes as a function of endophyte taxonomy and the taxonomy and distribution of their host plants. PLoS ONE 8(9), e73192. doi:10.1371/journal.pone.0073192

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Neubert K, Mendgen K, Brinkmann H, Wirsel SGR (2006) Only a few fungal species dominate highly diverse mycofloras associated with the common reed. Appl Environ Microbiol 72(2):1118–1128. doi:10.1128/AEM.72.2.1118-1128.2006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Herrera J, Khidir HH, Eudy DM, Porras-Alfaro A, Natvig DO, Sinsabaugh RL (2010) Shifting fungal endophyte communities colonize Bouteloua gracilis: effect of host tissue and geographical distribution. Mycologia 102(5):1012–1026. doi:10.3852/09-264

    Article  PubMed  Google Scholar 

  63. Marincowitz S, Crous PW, Groenewald JZ, Wingfield MJ (2008) Microfungi occurring on Proteaceae in the fynbos. In CBS Biodiversity Series 7. New York: Mycotaxon LTD. p. 515

  64. Magyar D, Shoemaker RA, Bobvos J, Crous PW, Groenewald JZ (2010) Pyrigemmula, a novel hyphomycete genus on grapevine and tree bark. Mycol Prog 10(3):307–314. doi:10.1007/s11557-010-0703-4

    Article  Google Scholar 

  65. Sommer J, Pausch J, Brundrett MC, Dixon KW, Bidartondo MI, Gebauer G (2012) Limited carbon and mineral nutrient gain from mycorrhizal fungi by adult Australian orchids. Am J Bot 99(7):1133–1145. doi:10.3732/ajb.1100575

    Article  CAS  PubMed  Google Scholar 

  66. Cai L, Jeewon R, Hyde KD (2006) Phylogenetic investigations of Sordariaceae based on multiple gene sequences and morphology. Mycol Res 110(2):137–150. doi:10.1016/j.mycres.2005.09.014

    Article  CAS  PubMed  Google Scholar 

  67. Hartmann M, Lee S, Hallam SJ, Mohn WW (2009) Bacterial, archaeal and eukaryal community structures throughout soil horizons of harvested and naturally disturbed forest stands. Environ Microbiol 11(12):3045–3062. doi:10.1111/j.1462-2920.2009.02008.x

    Article  PubMed  Google Scholar 

  68. Davis EC, Shaw AJ (2008) Biogeographic and phylogenetic patterns in diversity of liverwort-associated endophytes. Am J Bot 95(8):914–924. doi:10.3732/ajb.2006463

    Article  PubMed  Google Scholar 

  69. Hollister EB, Schadt CW, Palumbo AV, James Ansley R, Boutton TW (2010) Structural and functional diversity of soil bacterial and fungal communities following woody plant encroachment in the southern Great Plains. Soil Biol Biochem 42(10):1816–1824. doi:10.1016/j.soilbio.2010.06.022

    Article  CAS  Google Scholar 

  70. Stielow B, Hensel G, Strobelt D, Makonde HM, Rohde M, Dijksterhuis J, Göker M (2012) Hoffmannoscypha, a novel genus of brightly coloured, cupulate Pyronemataceae closely related to Tricharina and Geopora. Mycol Prog 12(4):675–686. doi:10.1007/s11557-012-0875-1

    Article  Google Scholar 

  71. Napoli C, Mello A, Borra A, Vizzini A, Sourzat P, Bonfante P (2010) Tuber melanosporum, when dominant, affects fungal dynamics in truffle grounds. New Phytol 185(1):237–247. doi:10.1111/j.1469-8137.2009.03053.x

    Article  CAS  PubMed  Google Scholar 

  72. Bidartondo MI, Read DJ (2008) Fungal specificity bottlenecks during orchid germination and development. Mol Ecol 17(16):3707–3716. doi:10.1111/j.1365-294X.2008.03848.x

  73. Luangsa-Ard JJ, Ridkaew R, Tasanathai K, Thanakitpipattana D, Hywel-Jones N (2011) Ophiocordyceps halabalaensis: a new species of Ophiocordyceps pathogenic to Camponotus gigas in Hala Bala Wildlife Sanctuary, Southern Thailand. Fungal Biol 115(7):608–614. doi:10.1016/j.funbio.2011.03.002

    Article  PubMed  Google Scholar 

  74. McGuire KL, Zak DR, Edwards IP, Blackwood CB, Upchurch R (2010) Slowed decomposition is biotically mediated in an ectomycorrhizal, tropical rain forest. Oecologia 164(3):785–795. doi:10.1007/s00442-010-1686-1

    Article  PubMed  Google Scholar 

  75. Rajulu MBG, Lai LB, Murali TS, Gopalan V, Suryanarayanan TS (2014) Several fungi from fire-prone forests of southern India can utilize furaldehydes. Mycol Prog 13(4):1049–1056. doi:10.1007/s11557-014-0992-0

    Article  Google Scholar 

  76. Börstler B, Renker C, Kahmen A, Buscot F (2005) Species composition of arbuscular mycorrhizal fungi in two mountain meadows with differing management types and levels of plant biodiversity. Biol Fertil Soils 42(4):286–298. doi:10.1007/s00374-005-0026-9

    Article  Google Scholar 

Download references

Acknowledgments

Our study was supported in part by a Grant-in-Aid for the Global COE Program E03 for Global Eco-Risk Management from Asian Viewpoints; the YNU International Environmental Leaders Program in Sustainable Living with Environmental Risk funded by Promoting Science and Technology System Reform of the Promotion of Science and Technology, Japan; and a grant from Yokohama National University and MEXT KAKENHI Grant Number 25220104. We thank the staff at the Gunung Madu Plantations for permitting this study and supporting the field experiment, Prof. John Hendri and Prof. Andi Setiawan in the Department of Chemistry FMIPA at the University of Lampung, and Dr. Udin Hasanuddin in the Department of Agroindustrial Technology, Faculty of Agriculture at the University of Lampung for supporting the field and laboratory experiments. We are also grateful to Dr. T. Nakamori at the Graduate School of Environment and Information Sciences, Yokohama National University, for helpful conversations regarding sequencing analysis. The data parsing processes were performed using the super computer system provided by the National Institute of Genetics (NIG), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiko Miura.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Table S1

(DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miura, T., Niswati, A., Swibawa, I.G. et al. Diversity of Fungi on Decomposing Leaf Litter in a Sugarcane Plantation and Their Response to Tillage Practice and Bagasse Mulching: Implications for Management Effects on Litter Decomposition. Microb Ecol 70, 646–658 (2015). https://doi.org/10.1007/s00248-015-0620-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-015-0620-9

Keywords

Navigation