Skip to main content

Advertisement

Log in

Initial Phylogenetic Relatedness of Saprotrophic Fungal Communities Affects Subsequent Litter Decomposition Rates

  • Fungal Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Ecosystem-level consequences of biodiversity loss of macroorganisms are well understood, while the repercussions of species extirpation in microbial systems are not. We manipulated species richness and phylogenetic relatedness of saprotrophic fungi in situ in a boreal forest to address this issue. Litter decomposition rates (as total mass loss) after 2 months were significantly higher in the least phylogenetically related fungal assemblages. Likewise, cellulose loss was also highest in the most distantly related treatments after 1 year. There were marginal effects of species richness on mass loss that only affected decomposition after 2 months. At the end of 1 year of decomposition, most fungal communities had collapsed from their original diversity to two species, mainly in the Penicillium or Hypocrea clades. Two concurrent processes may explain these results: competition between closely related fungal taxa and phylogenetic conservation in cellulose decomposition. Our results suggest that phylogenetic relatedness of fungal communities may be a more appropriate metric than species richness or community composition to predict functional responses of fungal communities to global change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pimentel D, Lach L, Zuniga R, Morrison D (2000) Environmental and economic costs of nonindigenous species in the United States. Bioscience 50(1):53–65

    Article  Google Scholar 

  2. Thomas C, Cameron A, Green R, Bakkenes M, Beaumont L, Collingham Y, Erasmus B, de Siqueira M, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld A, Midgley G, Miles L, Ortega-Huerta M, Peterson A, Phillips O, Williams S (2004) Extinction risk from climate change. Nature 427(6970):145–148

    Article  CAS  PubMed  Google Scholar 

  3. Hector A, Schmid B, Beierkuhnlein C, Caldeira M, Diemer M, Dimitrakopoulos P, Finn J, Freitas H, Giller P, Good J, Harris R, Hogberg P, Huss-Danell K, Joshi J, Jumpponen A, Korner C, Leadley P, Loreau M, Minns A, Mulder C, O’Donovan G, Otway S, Pereira J, Prinz A, Read D, Scherer-Lorenzen M, Schulze E, Siamantziouras A, Spehn E, Terry A, Troumbis A, Woodward F, Yachi S, Lawton J (1999) Plant diversity and productivity experiments in European grasslands. Science 286(5442):1123–1127

    Article  CAS  PubMed  Google Scholar 

  4. Tilman D (2001) Diversity and productivity in a long-term grassland experiment. Science 294(5543):843–845

    Article  CAS  PubMed  Google Scholar 

  5. Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setala H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75(1):3–35

    Article  Google Scholar 

  6. Setala H, McLean M (2004) Decomposition rate of organic substrates in relation to the species diversity of soil saprophytic fungi. Oecologia 139(1):98–107

    Article  PubMed  Google Scholar 

  7. Maherali H, Klironomos JN (2007) Influence of Phylogeny on fungal community assembly and ecosystem functioning. Science 316(5832):1746–1748. doi:10.1126/Science.1143082

    Article  CAS  PubMed  Google Scholar 

  8. van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396(6706):69–72

    Article  Google Scholar 

  9. Cadotte MW, Cardinale BJ, Oakley TH (2009) Evolutionary history and the effect of biodiversity on plant productivity. Proc Natl Acad Sci U S A 105(44):17012–17017

    Article  Google Scholar 

  10. Cadotte MW, Jonathan Davies T, Regetz J, Kembel SW, Cleland E, Oakley TH (2009) Phylogenetic diversity metrics for ecological communities: integrating species richness, abundance and evolutionary history. Ecol Lett

  11. Jousset A, Schmid B, Scheu S, Eisenhauer N (2011) Genotypic richness and dissimilarity opposingly affect ecosystem functioning. Ecol Lett 14(6):537–545. doi:10.1111/j.1461-0248.2011.01613.x

    Article  CAS  PubMed  Google Scholar 

  12. Cadotte MW (2013) Experimental evidence that evolutionarily diverse assemblages result in higher productivity. Proc Natl Acad Sci 110(22):8996–9000

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Cadotte MW, Cavender-Bares J, Tilman D, Oakley TH (2009) Using phylogenetic, functional and trait diversity to understand patterns of plant community productivity. Publ Libr Sci One 4(5):e5695

    Google Scholar 

  14. Loreau M (1998) Separating sampling and other effects in biodiversity experiments. Oikos 82(3):600–602

    Article  Google Scholar 

  15. Loreau M, Hector A (2001) Partitioning selection and complementarity in biodiversity experiments. Nature 412(6842):72–76

    Article  CAS  PubMed  Google Scholar 

  16. Wloch-Salamon DM, Gerla D, Hoekstra RF, de Visser JAGM (2008) Effect of dispersal and nutrient availability on the competitive ability of toxin-producing yeast. Proc R Soc B 275(1634):535–541

    Article  PubMed Central  PubMed  Google Scholar 

  17. Hector A (1999) Plant diversity and productivity experiments in European Grasslands. Science 286

  18. Baldrian P (2006) Fungal laccases—occurrence and properties. FEMS Microbiol Rev 30(2):215–242. doi:10.1111/j.1574-4976.2005.00010.x

    Article  CAS  PubMed  Google Scholar 

  19. Kirk T, Farrell R (1987) Enzymatic combustion—the microbial-degradation of lignin. Annu Rev Microbiol 41:465–505

    Article  CAS  PubMed  Google Scholar 

  20. Romani AM, Fischer H, Mille-Lindblom C, Tranvik LJ (2006) Interactions of bacteria and fungi on decomposing litter: differential extracellular enzyme activities. Ecology 87(10):2559–2569. doi:10.1890/0012-9658(2006)87[2559:iobafo]2.0.co;2

    Article  PubMed  Google Scholar 

  21. Hanson CA, Allison SD, Bradford MA, Wallenstein MD, Treseder KK (2008) Fungal taxa target different carbon sources in forest soil. Ecosystems 11(7):1157–1167

    Article  CAS  Google Scholar 

  22. McGuire KL, Bent E, Borneman J, Majumder A, Allison SD, Treseder KK (2010) Functional diversity in resource use by fungi. Ecology 91(8):2324–2332

    Article  PubMed  Google Scholar 

  23. Langenheder S, Bulling MT, Solan M, Prosser JI (2010) Bacterial biodiversity-ecosystem functioning relations are modified by environmental complexity. Publ Libr Sci One 5(5):e10834. doi:10.1371/journal.pone.0010834

    Google Scholar 

  24. LeBauer DS (2010) Litter degradation rate and β-glucosidase activity increase with fungal diversity. Can J For Res 40(6):1076–1085

    Article  CAS  Google Scholar 

  25. McGrady-Steed J, Harris PM, Morin PJ (1997) Biodiversity regulates ecosystem predictability. Nature 390(6656):162–165

    Article  CAS  Google Scholar 

  26. Tiunov A, Scheu S (2005) Facilitative interactions rather than resource partitioning drive diversity-functioning relationships in laboratory fungal communities. Ecol Lett 8(6):618–625

    Article  Google Scholar 

  27. Toljander Y, Lindahl B, Holmer L, Högberg N (2006) Environmental fluctuations facilitate species co-existence and increase decomposition in communities of wood decay fungi. Oecologia 148(4):625–631. doi:10.1007/s00442-006-0406-3

    Article  PubMed  Google Scholar 

  28. Bärlocher F, Corkum M (2003) Nutrient enrichment overwhelms diversity effects in leaf decomposition by stream fungi. Oikos 101(2):247–252. doi:10.1034/j.1600-0706.2003.12372.x

    Article  Google Scholar 

  29. Dang CK, Chauvet E, Gessner MO (2005) Magnitude and variability of process rates in fungal diversity-litter decomposition relationships. Ecol Lett 8(11):1129–1137

    Article  PubMed  Google Scholar 

  30. Griffiths B, Ritz K, Bardgett R, Cook R, Christensen S, Ekelund F, Sorensen S, Baath E, Bloem J, de Ruiter P, Dolfing J, Nicolardot B (2000) Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions: an examination of the biodiversity-ecosystem function relationship. Oikos 90(2):279–294

    Article  Google Scholar 

  31. Griffiths BS, Ritz K, Wheatley R, Kuan HL, Boag B, Christensen S, Ekelund F, Sorensen SJ, Muller S, Bloem J (2001) An examination of the biodiversity‚ Äìecosystem function relationship in arable soil microbial communities. Soil Biol Biochem 33(12‚Äì13):1713–1722. doi:10.1016/s0038-0717(01)00094-3

    Article  CAS  Google Scholar 

  32. Hedlund K, Ohrn M (2000) Tritrophic interactions in a soil community enhance decomposition rates. Oikos 88(3):585–591

    Article  Google Scholar 

  33. Kubartová A, Ranger J, Berthelin J, Beguiristain T (2009) Diversity and decomposing ability of saprophytic fungi from temperate forest litter. Microb Ecol 58(1):98–107. doi:10.1007/s00248-008-9458-8

    Article  PubMed  Google Scholar 

  34. Nielsen UN, Ayres E, Wall DH, Bardgett RD (2011) Soil biodiversity and carbon cycling: a review and synthesis of studies examining diversity-function relationships. Eur J Soil Sci 62(1):105–116

    Article  CAS  Google Scholar 

  35. Allison SD, Martiny J (2008) Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci 105(Supplement 1):11512–11519

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Martiny AC, Treseder KK, Pusch G (2013) Phylogenetic conservatism of functional traits in microorganisms. ISME J 7:830–838

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Zimmerman AE, Martiny AC, Allison SD (2013) Fine-scale phylogenetic clustering of resource-acquiring enzyme genes among sequenced prokaryotic genomes. ISME J 7:1187–1199

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Srivastava DS, Cadotte MW, MacDonald AAM, Marushia RG, Mirotchnick N (2012) Phylogenetic diversity and the functioning of ecosystems. Ecol Lett 15(7):637–648

    Article  PubMed  Google Scholar 

  39. Griffiths RI, Whiteley AS, O’Donnell AG, Bailey MJ (2000) Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA-and rRNA-based microbial community composition. Appl Environ Microbiol 66:5488–5491

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. McGuire KL, Allison SD, Fierer N, Treseder KK (2013) Ectomycorrhizal-dominated boreal and tropical forests have distinct fungal communities, but analogous spatial patterns across soil horizons. PLoS One. doi:10.1371/journal.pone.0068278

    Google Scholar 

  41. Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Duran C, Field M, Heled J, Kearse M, Markowitz S, Moir R, Stones-Havas S, Sturrock S, Theirer T, Wilson A (2011) Geneious v. 5.4

  42. Liu K, Raghavan S, Nelesen S, Linder CR, Warnow T (2009) Rapid and accurate large-scale coestimation of sequence alignments and phylogenetic trees. Science 324(5934):1561–1564. doi:10.1126/Science.1171243

    Article  CAS  PubMed  Google Scholar 

  43. Stamatakis A (In press) RAxML Version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics

  44. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Reed HE, Martiny JBH (2007) Testing the functional significance of microbial composition in natural communities. FEMS Microbiol Ecol 62(2):161–170

    Article  CAS  PubMed  Google Scholar 

  46. Masuko T, Minami A, Iwasaki N, Majima T, Nishimura S-I, Lee YC (2005) Carbohydrate analysis by a phenol and‚ sulfuric acid method in microplate format. Anal Biochem 339(1):69–72. doi:10.1016/j.ab.2004.12.001

    Article  CAS  PubMed  Google Scholar 

  47. Updegraff DM (1969) Semimicro determination of cellulose in biological materials. Anal Biochem 32(3):420–424. doi:10.1016/s0003-2697(69)80009-6

    Article  CAS  PubMed  Google Scholar 

  48. Brundrett M, Bougher M, Dell B, Grove T, Malajczuk N (1996) Working with mycorrhizas in forestry and agriculture

  49. Treseder K, Mack M, Cross A (2004) Relationships among fires, fungi, and soil dynamics in Alaskan boreal forests. Ecol Appl 14(6):1826–1838

    Article  Google Scholar 

  50. Rousk J, Baath E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4(10):1340–1351

    Article  PubMed  Google Scholar 

  51. Quince C, Lanzen A, Davenport RJ, Turnbaugh PJ (2011) Removing noise from pyrosequencing amplicons. BMC Bioinforma 12(38):1–18

    Google Scholar 

  52. Dickie IA (2010) Insidious effects of sequencing errors on perceived diversity in molecular surveys. New Phytol 188(4):916–918

    Article  PubMed  Google Scholar 

  53. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461

    Article  CAS  PubMed  Google Scholar 

  54. Kivlin SN, Hawkes CV, Treseder KK (2011) Global diversity and distribution of arbuscular mycorrhizal fungi. Soil Biol Biochem 43(11):2294–2303

    Article  CAS  Google Scholar 

  55. Caporaso JG, Kuczynski JS, Bittinger K, Bushman FD, Costello EK, Fierer N, Gonzalez-Pena A, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Shaw RG, Mitchell-Olds T (1993) Anova for unbalanced data: an overview. Ecology 74(6):1638–1645

    Article  Google Scholar 

  57. Duncan DB (1955) Multiple range and multiple F tests. Biometrics 11(1):1–42

    Article  Google Scholar 

  58. Cardinale BJ, Wright JP, Cadotte MW, Carroll IT, Hector A, Srivastava DS, Loreau M, Weis JJ (2007) Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc Natl Acad Sci 104(46):18123–18128

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24(18):2098–2100

    Article  CAS  PubMed  Google Scholar 

  60. Fukami T, Dickie IA, Paula Wilkie J, Paulus BC, Park D, Roberts A, Buchanan PK, Allen RB (2010) Assembly history dictates ecosystem functioning: evidence from wood decomposer communities. Ecol Lett 13(6):675–684

    Article  PubMed  Google Scholar 

  61. Dickie IA, Fukami T, Wilkie JP, Allen RB, Buchanan PK (2012) Do assembly history effects attenuate from species to ecosystem properties? A field test with wood-inhabiting fungi. Ecol Lett 15:133–141

    Article  PubMed  Google Scholar 

  62. Venail PA, Vives MJ (2013) Phylogenetic distance and species richness interactively affect the productivity of bacterial communities. Ecology 94(2529–2536)

  63. Burns JH, Strauss SY (2011) More closely related species are more ecologically similar in an experimental test. Proc Natl Acad Sci 108(13):5302–5307. doi:10.1073/pnas.1013003108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Peay KG, Belisle M, Fukami T (2012) Phylogenetic relatedness predicts priority effects in nectar yeast communities. Proc R Soc B 279:749–758

    Article  PubMed Central  PubMed  Google Scholar 

  65. Violle C, Nemergut DR, Pu Z, Jiang L (2011) Phylogenetic limiting similarity and competitive exclusion. Ecol Lett 14(8):782–787. doi:10.1111/j.1461-0248.2011.01644.x

    Article  PubMed  Google Scholar 

  66. Allison SD, Czimczik CI, Treseder KK (2008) Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest. Glob Chang Biol 14(5):1156–1168

    Article  Google Scholar 

  67. Talbot J, Treseder KK (2012) Interactions between lignin, cellulose, and nitrogen drive litter chemistry-decay relationships. Ecology. doi:10.1890/11-0843.1

    PubMed  Google Scholar 

  68. Vance ED, Chapin FS (2001) Substrate limitations to microbial activity in taiga forest floors. Soil Biol Biochem 33(2):173–188. doi:10.1016/s0038-0717(00)00127-9

    Article  CAS  Google Scholar 

  69. Boddy L (1993) Saprotrophic cord-forming fungi: warfare strategies and other ecological aspects. Mycol Res 97(6):641–655

    Article  Google Scholar 

  70. Gessner MO, Swan CM, Dang CK, Mckie BG, Bardgett RD, Wall DH, Hättenschwiler S (2010) Diversity meets decomposition. Trends Ecol Evol 25(6):372–380

    Article  PubMed  Google Scholar 

  71. Brunner K, Peterbauer CK, Mach RL, Lorito M, Zeilinger S, Kubicek CP (2003) The Nag1 N-acetylglucosaminidase of Trichoderma atroviride is essential for chitinase induction by chitin and of major relevance to biocontrol. Curr Genet 43(4):289–295. doi:10.1007/s00294-003-0399-y

    Article  CAS  PubMed  Google Scholar 

  72. Haran S, Schickler H, Oppenheim A, Chet I (1995) New components of the chitinolytic system of Trichoderma harzianum. Mycol Res 99(4):441–446. doi:10.1016/s0953-7562(09)80642-4

    Article  CAS  Google Scholar 

  73. O’Sullivan A (1997) Cellulose: the structure slowly unravels. Cellulose 4(3):173–207. doi:10.1023/a:1018431705579

    Article  Google Scholar 

  74. Preston RD (1974) The physical biology of plant cell walls. Chapman & Hall, London

    Google Scholar 

  75. Schimel J, Chapin F, Korner C (1995) Ecosystem consequences of microbial diversity and community structure. Arctic and Alpine Biodiversity: Patterns, Causes, and Ecosystem Consequences, pp 239–254

  76. McClaugherty C (1983) Soluble polyphenols and carbohydrates in throughfall and leaf litter decomposition. Acta Oecol Oecol Gen 4(4):375–385

    Google Scholar 

  77. Robinson CH (2001) Cold adaptation in Arctic and Antarctic fungi. New Phytol 151(2):341–353. doi:10.1046/j.1469-8137.2001.00177.x

    Article  CAS  Google Scholar 

  78. Bell T, Newman JA, Silverman BW, Turner SL, Lilley AK (2005) The contribution of species richness and composition to bacterial services. Nature 436(7054):1157–1160. doi:http://www.nature.com/nature/journal/v436/n7054/suppinfo/nature03891_S1.html

  79. Couteaux M, Bottner P, Berg B (1995) Litter decomposition, climate and litter quality. Trends Ecol Evol 10(2):63–66

    Article  CAS  PubMed  Google Scholar 

  80. Allison S (2006) Brown ground: a soil carbon analogue for the green world hypothesis? Am Nat 167(5):619–627

    Article  PubMed  Google Scholar 

  81. Persson T (1980) Structure and function of northern coniferous forests—an ecosystem study. Ecological Bulletins, Stockholm

    Google Scholar 

  82. Riley R, Salamov AA, Brown DW, Nagy LG, Floudas D, Held BW, Levasseur A, Lombard V, Morin E, Otillar R, Lindquist EA, Sun H, LaButti KM, Schmutz J, Jabbour D, Luo H, Baker SE, Pisabarro AG, Walton JD, Blanchette RA, Henrissat B, Martin F, Cullen D, Hibbett DS, Grigoriev IV (2014) Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proc Natl Acad Sci 111(27):9923–9928

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Berlemont R, Martiny AC (2013) Phylogenetic distribution of potential cellulases in bacteria. Appl Environ Microbiol 79(5):1545–1554

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Consortium FB (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci 109(16):6241–6246. doi:10.1073/pnas.1117018109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

J.B.H. Martiny, S.D. Allison, S.R. Holden, H. McGray, C. Averill, B. Waring, and C. V. Hawkes provided feedback on earlier drafts of this manuscript. J. Talbot collected and maintained the fungal cultures. S.R. Holden and C.M. Kivlin provided field assistance. C. Doan and M. Gonzalez assisted in litter chemical analyses and microscopy. A.C. Harvey and C.V. Hawkes provided assistance and lab space for molecular work. This publication was developed under STAR Fellowship Assistance Agreement no. FP917191-01-0 awarded by the US Environmental Protection Agency (EPA) to SNK. It has not been formally reviewed by the EPA. The views expressed in this publication are solely those of the authors, and EPA does not endorse any products or commercial services mentioned. The authors were supported by a Kearney Foundation grant and an NSF Ecosystems grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie N. Kivlin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Diagram of species composition of each litterbag treatment. (XLSX 30 kb)

Table S1

Representative BLAST statistics and identities for all fungal cultures. (XLSX 53 kb)

Table S2

Species richness and phylogenetic relatedness for 71 litterbags after two months and one year. (XLSX 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kivlin, S.N., Treseder, K.K. Initial Phylogenetic Relatedness of Saprotrophic Fungal Communities Affects Subsequent Litter Decomposition Rates. Microb Ecol 69, 748–757 (2015). https://doi.org/10.1007/s00248-014-0509-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-014-0509-z

Keywords

Navigation