Skip to main content
Log in

Shedding Light on Microbial Predator–Prey Population Dynamics Using a Quantitative Bioluminescence Assay

  • Physiology and Biotechnology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

This study assessed the dynamics of predation by Bdellovibrio bacteriovorus HD 100. Predation tests with two different bioluminescent strains of Escherichia coli, one expressing a heat-labile bacterial luciferase and the other a heat-stable form, showed near identical losses from both, indicating that protein expression and stability are not responsible for the “shutting-off” of the prey bioluminescence (BL). Furthermore, it was found that the loss in the prey BL was not proportional with the predator-to-prey ratio (PPR), with significantly greater losses seen as this value was increased. This suggests that other factors also play a role in lowering the prey BL. The loss in BL, however, was very consistent within nine independent experiments to the point that we were able to reliably estimate the predator numbers within only 1 h when present at a PPR of 6 or higher, Using a fluorescent prey, we found that premature lysis of the prey occurs at a significant level and was more prominent as the PPR ratio increased. Based upon the supernatant fluorescent signal, even a relatively low PPR of 10–20 led to approximately 5 % of the prey population being prematurely lysed within 1 h, while a PPR of 90 led to nearly 15 % lysis. Consequently, we developed a modified Lotka–Volterra predator–prey model that accounted for this lysis and is able to reliably estimate the prey and bdelloplast populations for a wide range of PPRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Davidov Y, Jurkevitch E (2004) Diversity and evolution of Bdellovibrio-and-like organisms (BALOs), reclassification of Bacteriovorax starrii as Peredibacter starrii gen. nov., comb. nov., and description of the Bacteriovorax–Peredibacter clade as Bacteriovoracaceae fam. nov. Int J Syst Evol Microbiol 54(Pt 5):1439–1452. doi:10.1099/ijs.0.02978-0

    Article  CAS  PubMed  Google Scholar 

  2. Baer ML, Ravel J, Chun J, Hill RT, Williams HN (2000) A proposal for the reclassification of Bdellovibrio stolpii and Bdellovibrio starrii into a new genus, Bacteriovorax gen. nov. as Bacteriovorax stolpii comb. nov. and Bacteriovorax starrii comb. nov., respectively. Int J Syst Evol Microbiol 50(Pt 1):219–224

    Article  CAS  PubMed  Google Scholar 

  3. Davidov Y, Huchon D, Koval SF, Jurkevitch E (2006) A new alpha-proteobacterial clade of Bdellovibrio-like predators: implications for the mitochondrial endosymbiotic theory. Environ Microbiol 8(12):2179–2188. doi:10.1111/j.1462-2920.2006.01101.x

    Article  CAS  PubMed  Google Scholar 

  4. Jurkevitch E, Minz D, Ramati B, Barel G (2000) Prey range characterization, ribotyping, and diversity of soil and rhizosphere Bdellovibrio spp. isolated on phytopathogenic bacteria. Appl Environ Microb 66(6):2365–2371. doi:10.1128/Aem.66.6.2365-2371.2000

    Article  CAS  Google Scholar 

  5. Rogosky AM, Moak PL, Emmert EAB (2006) Differential predation by Bdellovibrio bacteriovorus 109J. Curr Microbiol 52(2):81–85. doi:10.1007/s00284-005-0038-6

    Article  CAS  PubMed  Google Scholar 

  6. Chen H, Athar R, Zheng G, Williams HN (2011) Prey bacteria shape the community structure of their predators. ISME J 5(8):1314–1322. doi:10.1038/ismej.2011.4

    Article  PubMed Central  PubMed  Google Scholar 

  7. White JR, Patel J, Ottesen A, Arce G, Blackwelder P, Lopez JV (2012) Pyrosequencing of bacterial symbionts within Axinella corrugata sponges: diversity and seasonal variability. PloS One 7(6):e38204. doi:10.1371/journal.pone.0038204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Williams HN, Turng BF, Kelley JI (2009) Survival response of Bacteriovorax in surface biofilm versus suspension when stressed by extremes in environmental conditions. Microbial Ecol 58(3):474–484. doi:10.1007/s00248-009-9499-7

    Article  Google Scholar 

  9. Paver SF, Hayek KR, Gano KA, Fagen JR, Brown CT, Davis-Richardson AG, Crabb DB, Rosario-Passapera R, Giongo A, Triplett EW, Kent AD (2013) Interactions between specific phytoplankton and bacteria affect lake bacterial community succession. Environ Microbiol. doi:10.1111/1462-2920.12131

    PubMed  Google Scholar 

  10. Van Essche M, Sliepen I, Loozen G, Van Eldere J, Quirynen M, Davidov Y, Jurkevitch E, Boon N, Teughels W (2009) Development and performance of a quantitative PCR for the enumeration of Bdellovibrionaceae. Environ Microbiol Rep 1(4):228–233. doi:10.1111/j.1758-2229.2009.00034.x

    Article  PubMed  Google Scholar 

  11. Meighen EA (1993) Bacterial bioluminescence: organization, regulation, and application of the lux genes. FASEB J 7(11):1016–1022

    CAS  PubMed  Google Scholar 

  12. Iebba V, Santangelo F, Totino V, Nicoletti M, Gagliardi A, De Biase RV, Cucchiara S, Nencioni L, Conte MP, Schippa S (2013) Higher prevalence and abundance of Bdellovibrio bacteriovorus in the human gut of healthy subjects. PloS One 8(4):e61608. doi:10.1371/journal.pone.0061608

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Kadouri D, O'Toole GA (2005) Susceptibility of biofilms to Bdellovibrio bacteriovorus attack. Appl Environ Microbiol 71(7):4044–4051. doi:10.1128/Aem.71.7.4044-4051.2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Kadouri D, Venzon NC, O'Toole GA (2007) Vulnerability of pathogenic biofilms to Micavibrio aeruginosavorus. Appl Environ Microbiol 73(2):605–614. doi:10.1128/AEM.01893-06

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Dwidar M, Leung BM, Yaguchi T, Takayama S, Mitchell RJ (2013) Patterning bacterial communities on epithelial cells. PLoS One 8(6):e67165. doi:10.1371/journal.pone.0067165

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Sockett RE, Lambert C (2004) Bdellovibrio as therapeutic agents: a predatory renaissance? Nat Rev Microbiol 2(8):669–675. doi:10.1038/Nrmicro959

    Article  CAS  PubMed  Google Scholar 

  17. Boileau MJ, Clinkenbeard KD, Iandolo JJ (2011) Assessment of Bdellovibrio bacteriovorus 109J killing of Moraxella bovis in an in vitro model of infectious bovine keratoconjunctivitis. Can J Vet Res 75(4):285–291

    PubMed Central  PubMed  Google Scholar 

  18. Atterbury RJ, Hobley L, Till R, Lambert C, Capeness MJ, Lerner TR, Fenton AK, Barrow P, Sockett RE (2011) Effects of orally administered Bdellovibrio bacteriovorus on the well-being and Salmonella colonization of young chicks. Appl Environ Microbiol 77(16):5794–5803. doi:10.1128/Aem.00426-11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Varon M, Drucker I, Shilo M (1969) Early effects of Bdellovibrio infection on the syntheses of protein and RNA of host bacteria. Biochem Biophys Res Commun 37(3):518–525

    Article  CAS  PubMed  Google Scholar 

  20. Rendulic S, Jagtap P, Rosinus A, Eppinger M, Baar C, Lanz C, Keller H, Lambert C, Evans KJ, Goesmann A, Meyer F, Sockett RE, Schuster SC (2004) A predator unmasked: life cycle of Bdellovibrio bacteriovorus from a genomic perspective. Science 303(5658):689–692. doi:10.1126/science.1093027

    Article  CAS  PubMed  Google Scholar 

  21. Fenton AK, Lambert C, Wagstaff PC, Sockett RE (2010) Manipulating each MreB of Bdellovibrio bacteriovorus gives diverse morphological and predatory phenotypes. J Bacteriol 192(5):1299–1311. doi:10.1128/Jb.01157-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Lerner TR, Lovering AL, Bui NK, Uchida K, Aizawa S, Vollmer W, Sockett RE (2012) Specialized peptidoglycan hydrolases sculpt the intra-bacterial niche of predatory Bdellovibrio and increase population fitness. PLoS Pathog 8(2):e1002524. doi:10.1371/journal.ppat.1002524

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Lambert C, Sockett RE (2013) Nucleases in Bdellovibrio bacteriovorus contribute towards efficient self-biofilm formation and eradication of preformed prey biofilms. FEMS Microbiol Lett 340(2):109–116. doi:10.1111/1574-6968.12075

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Flemming HC, Neu TR, Wozniak DJ (2007) The EPS matrix: the “House of Biofilm cells”. J Bacteriol 189(22):7945–7947. doi:10.1128/Jb.00858-07

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Lee JH, Mitchell RJ, Gu MB (2004) Enhancement of the multi-channel continuous monitoring system through the use of Xenorhabdus luminescens lux fusions. Biosens Bioelectron 20(3):475–481. doi:10.1016/j.bios.2004.02.019

    Article  CAS  PubMed  Google Scholar 

  26. Lee S, Mitchell RJ (2012) Detection of toxic lignin hydrolysate-related compounds using an inaA::luxCDABE fusion strain. J Biotechnol 157(4):598–604. doi:10.1016/j.jbiotec.2011.06.018

    Article  CAS  PubMed  Google Scholar 

  27. Yaguchi T, Lee S, Choi WS, Kim D, Kim T, Mitchell RJ, Takayama S (2010) Micropatterning bacterial suspensions using aqueous two phase systems. Analyst 135(11):2848–2852. doi:10.1039/c0an00464b

    Article  CAS  PubMed  Google Scholar 

  28. Yaguchi T, Dwidar M, Byun CK, Leung B, Lee S, Cho YK, Mitchell RJ, Takayama S (2012) Aqueous two-phase system-derived biofilms for bacterial interaction studies. Biomacromolecules 13(9):2655–2661. doi:10.1021/bm300500y

    Article  CAS  PubMed  Google Scholar 

  29. Tomlin KL, Clark SRD, Ceri H (2004) Green and red fluorescent protein vectors for use in biofilm studies of the intrinsically resistant Burkholderia cepacia complex. J Microbiol Methods 57(1):95–106. doi:10.1016/j.mimet.2003.12.007

    Article  CAS  PubMed  Google Scholar 

  30. Gil GC, Mitchell RJ, Chang ST, Gu MB (2000) A biosensor for the detection of gas toxicity using a recombinant bioluminescent bacterium. Biosens Bioelectron 15(1–2):23–30

    CAS  PubMed  Google Scholar 

  31. Meighen EA, Dunlap PV (1993) Physiological, biochemical and genetic-control of bacterial bioluminescence. Adv Microbial Physiol 34:1–67. doi:10.1016/S0065-2911(08)60027-2

    Article  CAS  Google Scholar 

  32. Chatterjee J, Meighen EA (1995) Biotechnological applications of bacterial bioluminescence (Lux) genes. Photochem Photobiol 62(4):641–650. doi:10.1111/j.1751-1097.1995.tb08711.x

    Article  CAS  Google Scholar 

  33. Varon M (1979) Selection of predation-resistant bacteria in continuous culture. Nature 277(5695):386–388

    Article  Google Scholar 

  34. Varon M, Zeigler BP (1978) Bacterial predator–prey interaction at low prey density. Appl Environ Microbiol 36(1):11–17

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Lambert C, Smith MCM, Sockett RE (2003) A novel assay to monitor predator–prey interactions for Bdellovibrio bacteriovorus 109J reveals a role for methyl-accepting chemotaxis proteins in predation. Environ Microbiol 5(2):127–132

    Article  CAS  PubMed  Google Scholar 

  36. Mitchell RJ, Hong HN, Gu MB (2006) Induction of kanamycin resistance gene of plasmid pUCD615 by benzoic acid and phenols. J Microbiol Biotech 16(7):1125–1131

    CAS  Google Scholar 

  37. Mitchell RJ, Gu MB (2011) Use of protein stability to develop dual luciferase toxicity bioreporter strains. Biotech Bioproc E 16(6):1254–1261. doi:10.1007/s12257-011-0184-6

    Article  CAS  Google Scholar 

  38. Mitchell RJ, Ahn JM, Gu MB (2005) Comparison of Photorhabdus luminescens and Vibrio fischeri lux fusions to study gene expression patterns. J Microbiol Biotech 15(1):48–54

    CAS  Google Scholar 

  39. Frackman S, Anhalt M, Nealson KH (1990) Cloning, organization, and expression of the bioluminescence genes of Xenorhabdus luminescens. J Bacteriol 172(10):5767–5773

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Monnappa AK, Dwidar M, Mitchell RJ (2013) Application of bacterial predation to mitigate recombinant bacterial populations and their DNA. Soil Biol Biochem 57:427–435. doi:10.1016/j.soilbio.2012.09.010

    Article  CAS  Google Scholar 

  41. Stolp H, Starr MP (1963) Bdellovibrio bacteriovorus Gen. et Sp. n., a predatory, ectoparasitic, and bacteriolytic microorganism. Antonie Van Leeuwenhoek 29:217–248

    Article  CAS  PubMed  Google Scholar 

  42. Park S, Kim D, Mitchell RJ, Kim T (2011) A microfluidic concentrator array for quantitative predation assays of predatory microbes. Lab Chip 11(17):2916–2923. doi:10.1039/c1lc20230h

    Article  CAS  PubMed  Google Scholar 

  43. Hobley L, King JR, Sockett RE (2006) Bdellovibrio predation in the presence of decoys: three-way bacterial interactions revealed by mathematical and experimental analyses. Appl Environ Microbiol 72(10):6757–6765. doi:10.1128/AEM.00844-06

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Fenton AK, Kanna M, Woods RD, Aizawa SI, Sockett RE (2010) Shadowing the actions of a predator: backlit fluorescent microscopy reveals synchronous nonbinary septation of predatory Bdellovibrio inside prey and exit through discrete bdelloplast pores. J Bacteriol 192(24):6329–6335. doi:10.1128/JB.00914-10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Varon M, Drucker I, Shilo M (1969) Early effects of Bdellovibrio infection on syntheses of protein and RNA of host bacteria. Biochem Biophys Res Commun 37(3):518–525. doi:10.1016/0006-291×(69)90946-2

    Article  CAS  PubMed  Google Scholar 

  46. Coleman DC (1994) The microbial loop concept as used in terrestrial soil ecology studies. Microbial Ecol 28(2):245–250. doi:10.1007/Bf00166814

    Article  CAS  Google Scholar 

  47. Blackburn N, Fenchel T, Mitchell J (1998) Microscale nutrient patches in planktonic habitats shown by chemotactic bacteria. Science 282(5397):2254–2256. doi:10.1126/science.282.5397.2254

    Article  CAS  PubMed  Google Scholar 

  48. Blackburn N, Fenchel T (1999) Modelling of microscale patch encounter by chemotactic protozoa. Protist 150(3):337–343

    Article  CAS  PubMed  Google Scholar 

  49. Ward S (1973) Chemotaxis by the nematode Caenorhabditis elegans: identification of attractants and analysis of the response by use of mutants. Proc Natl Acad Sci U S A 70(3):817–821

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Creativity and Innovation Project as funded by the Ulsan National Institute of Science and Technology (UNIST) (Grant #1.120051.01) and by the National Research Foundation of Korea through the Ministry of Education, Science and Technology (Grant 2011–0000886).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheol-Min Ghim or Robert J. Mitchell.

Additional information

Author Contributions

H.I., C.-M.G. and R.J.M. designed the experiments; H.I., D.K. and R.J.M. performed the experiments; C.-M.G. performed the numerical analysis and modeling; H.I., C.-M.G. and R.J.M. analyzed the data. H.I., C.-M.G. and R.J.M. wrote the paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Im, H., Kim, D., Ghim, CM. et al. Shedding Light on Microbial Predator–Prey Population Dynamics Using a Quantitative Bioluminescence Assay. Microb Ecol 67, 167–176 (2014). https://doi.org/10.1007/s00248-013-0323-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-013-0323-z

Keywords

Navigation