Microbial Ecology

, Volume 66, Issue 4, pp 831–839

Uneven Distribution of Halobacillus trueperi Species in Arid Natural Saline Systems of Southern Tunisian Sahara

Authors

  • Amel Guesmi
    • Laboratoire MBA, Département de Biologie, Faculté des Sciences de TunisUniversité de Tunis El Manar
  • Besma Ettoumi
    • Laboratoire MBA, Département de Biologie, Faculté des Sciences de TunisUniversité de Tunis El Manar
  • Darine El Hidri
    • Laboratoire MBA, Département de Biologie, Faculté des Sciences de TunisUniversité de Tunis El Manar
  • Jihene Essanaa
    • Laboratoire MBA, Département de Biologie, Faculté des Sciences de TunisUniversité de Tunis El Manar
  • Hanene Cherif
    • Laboratoire MBA, Département de Biologie, Faculté des Sciences de TunisUniversité de Tunis El Manar
  • Francesca Mapelli
    • Department of Food, Environmental and Nutritional Sciences (DeFENS)University of Milan
  • Ramona Marasco
    • Department of Food, Environmental and Nutritional Sciences (DeFENS)University of Milan
  • Eleonora Rolli
    • Department of Food, Environmental and Nutritional Sciences (DeFENS)University of Milan
  • Abdellatif Boudabous
    • Laboratoire MBA, Département de Biologie, Faculté des Sciences de TunisUniversité de Tunis El Manar
    • Laboratoire MBA, Département de Biologie, Faculté des Sciences de TunisUniversité de Tunis El Manar
    • Laboratoire Biotechnologie et Valorisation des Bio-Géo Ressources LR11ES31, Institut Supérieur de BiotechnologieUniversité de La Manouba
Environmental Microbiology

DOI: 10.1007/s00248-013-0274-4

Cite this article as:
Guesmi, A., Ettoumi, B., El Hidri, D. et al. Microb Ecol (2013) 66: 831. doi:10.1007/s00248-013-0274-4

Abstract

The genetic diversity of a collection of 336 spore-forming isolates recovered from five salt-saturated brines and soils (Chott and Sebkhas) mainly located in the hyper-arid regions of the southern Tunisian Sahara has been assessed. Requirements and abilities for growth at a wide range of salinities\ showed that 44.3 % of the isolates were extremely halotolerant, 23 % were moderate halotolerant, and 32.7 % were strict halophiles, indicating that they are adapted to thrive in these saline ecosystems. A wide genetic diversity was documented based on 16S–23S rRNA internal transcribed spacer fingerprinting profiles (ITS) and 16S rRNA gene sequences that clustered the strains into seven genera: Bacillus, Gracilibacillus, Halobacillus, Oceanobacillus, Paenibacillus, Pontibacillus, and Virgibacillus. Halobacillus trueperi was the most encountered species in all the sites and presented a large intraspecific diversity with a multiplicity of ITS types. The most frequent ITS type included 42 isolates that were chosen for assessing of the intraspecific diversity by BOX-PCR fingerprinting. A high intraspecific microdiversity was documented by 14 BOX-PCR genotypes whose distribution correlated with the strain geographic origin. Interestingly, H. trueperi isolates presented an uneven geographic distribution among sites with the highest frequency of isolation from the coastal sites, suggesting a marine rather than terrestrial origin of the strains. The high frequency and diversity of H. trueperi suggest that it is a major ecosystem-adapted microbial component of the Tunisian Sahara harsh saline systems of marine origin.

Supplementary material

248_2013_274_MOESM1_ESM.doc (160 kb)
Supplementary material Fig. S1. 16S-23S rDNA ITS haplotypes of spore forming bacteria as resolved on 2 % agarose gels. Lane M contained a 50 bp ladder where the positions of the 100, 400 and 800 bp are indicated on the left. Lane M1 contained 100 bp ladder. ITS haplotype numbers are indicated above the patterns. (A) ITS 1–37, isolates BMG J69, J62, A144, AE14, AJ24, J49, E5, AJ37, A137, S18.1, 1.5, AE8, J51, D3, A74, 7.26, J81, J78, J82, AJ19, AG21, J38, J18, A126, 10.4, J54, A83, G1, A25, G11, AG26, AJ7, J36, J55, AE3, J77, AJ41. (B) ITS 38–65, isolates BMG E22, A36, A18, E56, E41, E58, E50, E21, E64, E25, E69, A40, A64, AJ26, A92, A57, A86, A22, A108, A63, AG3, AG23, AJ49, AG24, AJ32, AG1, A42, D10. (DOC 159 kb)
248_2013_274_MOESM2_ESM.doc (163 kb)
Supplementary material Fig. S2. BOX-PCR profiles resolved on 2 % agarose gels. BOX haplotypes numbers are indicated from B1 to B14. M1, molecular marker (1 kb); M2, molecular marker (100 bp) and M3, molecular marker (50 bp). (DOC 163 kb)
248_2013_274_MOESM3_ESM.doc (168 kb)
ESM 3(DOC 168 kb)

Copyright information

© Springer Science+Business Media New York 2013