Skip to main content

Advertisement

Log in

Culturing Bias in Marine Heterotrophic Flagellates Analyzed Through Seawater Enrichment Incubations

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The diversity of heterotrophic flagellates is generally based on cultivated strains, on which ultrastructural, physiological, and molecular studies have been performed. However, the relevance of these cultured strains as models of the dominant heterotrophic flagellates in the marine planktonic environment is unclear. In fact, molecular surveys typically recover novel eukaryotic lineages that have refused cultivation so far. This study was designed to directly address the culturing bias in planktonic marine heterotrophic flagellates. Several microcosms were established adding increasing amounts and sources of organic matter to a confined natural microbial community pre-filtered by 3 μm. Growth dynamics were followed by epifluorescence microscopy and showed the expected higher yield of bacteria and heterotrophic flagellates at increased organic matter additions. Moreover, protist diversity analyzed by molecular tools showed a clear substitution in the community, which differed more and more from the initial sample as the organic matter increased. Within this gradient, there was also an increase of sequences related to cultured organisms as well as a decrease in diversity. Culturing bias is partly explained by the use of organic matter in the isolation process, which drives a shift in the community to conditions closer to laboratory cultures. An intensive culturing effort using alternative isolation methods is necessary to allow the access to the missing heterotrophic flagellates that constitute the abundant and active taxa in marine systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sherr EB, Sherr BF (2002) Significance of predation by protists in aquatic microbial food webs. Anton Leeuw 81:293–308

    Article  CAS  Google Scholar 

  2. Jürgens K, Massana R (2008) Protistan grazing on marine bacterioplankton. In: Kirchman DL (ed) Microbial ecology of the oceans, 2nd edn. Wiley, New York, pp 383–441

    Chapter  Google Scholar 

  3. Pernthaler J (2005) Predation on prokaryotes in the water column and its ecological implications. Nat Rev Microbiol 3:537–546

    Article  CAS  PubMed  Google Scholar 

  4. Guillou L, Viprey M, Chambouvet A, Welsh RM, Kirkham AR, Massana R, Scanlan DJ, Worden AZ (2008) Widespread occurrence and genetic diversity of marine parasitoids belonging to Syndiniales (Alveolata). Environ Microbiol 10:397–408

    Article  Google Scholar 

  5. Fenchel T (1982) Ecology of heterotrophic microflagellates: I. Some important forms and their functional morphology. Mar Ecol Prog Ser 8:211–223

    Article  Google Scholar 

  6. Boenigk J, Pfandl K, Stadler P, Chatzinotas A (2005) High diversity of the “Spumella-like” flagellates: an investigation based on the SSU rRNA gene sequences of isolates from habitats located in six different geographic regions. Environ Microbiol 7:685–697

    Article  CAS  PubMed  Google Scholar 

  7. Cowling AJ (1991) Free-living heterotrophic flagellates: methods of isolation and maintenance, including sources of strains in culture. In: Patterson DJ, Larsen J (eds) The biology of free-living heterotrophic flagellates. Oxford University Press, Oxford, pp 477–492

    Google Scholar 

  8. Wang J, Levin P (2009) Metabolism, cell growth and the bacterial cell cycle. Nat Rev Microbiol 7:822–827

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Fenchel T (1982) Ecology of heterotrophic microflagellates: IV. Quantitative occurrence and importance as bacterial consumers. Mar Ecol Prog Ser 9:35–42

    Article  Google Scholar 

  10. Lim EL, Dennet MR, Caron DA (1999) The ecology of Paraphysomonas imperforata based on studies employing oligonucleotide probe identification in coastal water samples and enrichment cultures. Limnol Oceanogr 44:37–51

    Article  Google Scholar 

  11. Arndt H, Dietrich D, Auer B, Cleven EJ, Gräfenhan T, Weitere M, Mylnikov AP (2000) Functional diversity of heterotrophic flagellates in aquatic ecosystems. In: Leadbeater BSC, Green JC (eds) The flagellates: unity, diversity and evolution. Taylor & Francis Press, London, pp 240–268

    Google Scholar 

  12. Scheckenbach F, Wylezich C, Weitere M, Hausmann K, Arndt H (2005) Molecular identity of strains of heterotrophic flagellates isolated from surface waters and deep-sea sediments of the South Atlantic based on SSU rDNA. Aquat Microb Ecol 38:239–247

    Article  Google Scholar 

  13. Massana R, del Campo J, Dinter C, Sommaruga R (2007) Crash of a population of the marine heterotrophic flagellate Cafeteria roenbergensis by viral infection. Environ Microbiol 9:2660–2669

    Article  CAS  PubMed  Google Scholar 

  14. del Campo J, Massana R (2011) Emerging diversity within chrysophytes, choanoflagellates and bicosoecids based on molecular surveys. Protist 162:435–448

    Article  PubMed  Google Scholar 

  15. Massana R, Balagué V, Guillou L, Pedrós-Alió C (2004) Picoeukaryotic diversity in an oligotrophic coastal site studied by molecular and culturing approaches. FEMS Microbiol Ecol 50:231–243

    Article  CAS  PubMed  Google Scholar 

  16. Massana R, Guillou L, Terrado R, Forn I, Pedrós-Alió C (2006) Growth of uncultured heterotrophic flagellates in unamended seawater incubations. Aquat Microb Ecol 45:171–180

    Article  Google Scholar 

  17. Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Snyder JC, Spuhler J, Wiedenheft B, Roberto FF, Douglas T, Young MJ (2004) Effects of culturing on the population structure of a hyperthermophilic virus. Microb Ecol 48:561–566

    Article  CAS  PubMed  Google Scholar 

  19. Countway PD, Gast RJ, Savai P, Caron DA (2005) Protistan diversity estimates based on 18S rDNA from seawater incubations in the Western North Atlantic. J Eukaryot Microbiol 52:95–106

    Article  CAS  PubMed  Google Scholar 

  20. Massana R, Gasol JM, Bjørnsen PK, Blackburn N, Hagström A, Hietanen S, Hygu BH, Kuparinen J, Pedrós-Alió C (1997) Measurement of bacterial size via image analysis of epifluorescence preparations: description of an inexpensive system and solutions to some of the most common problems. Sci Mar 61:397–407

    Google Scholar 

  21. Díez B, Pedrós-Alió C, Massana R (2001) Study of genetic diversity of eukaryotic picoplankton in different oceanic regions by small-subunit rRNA gene cloning and sequencing. Appl Environ Microbiol 67:2932–2941

    Article  PubMed Central  PubMed  Google Scholar 

  22. Muyzer G, Brinkhoff T, Nübel U, Santegoeds C, Schäfer H, Wawer C (1997) Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. In: Akkermans ADL, van Elsas JD, de Bruijn FJ (eds) Molecular microbial ecology manual, vol. 3.4.4. Kluwer, Dordrecht, pp 1–27

    Google Scholar 

  23. Díez B, Pedrós-Alió C, Marsh TL, Massana R (2001) Application of denaturing gradient gel electrophoresis (DGGE) to study the diversity of marine picoeukaryotic assemblages and comparison of DGGE with other molecular techniques. Appl Environ Microbiol 67:2942–2951

    Article  PubMed Central  PubMed  Google Scholar 

  24. Elwood HJ, Olsen GJ, Sogin ML (1985) The small subunit ribosomal RNA gene sequences from the hypotrichous ciliates Ogwicha nova and Stylonychia pustulata. J Mol Biol Evol 2:399–410

    CAS  Google Scholar 

  25. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, Boutte C, Burgaud G, de Vargas C, Decelle J, del Campo J, Dolan JR, Dunthorn M, Edvardsen B, Holzmann M, Kooistra WHCF, Lara E, Le Bescot N, Logares R, Mahe F, Massana R, Montresor M, Morard R, Not F, Pawlowski J, Probert I, Sauvadet AL, Siano R, Stoeck T, Vaulot D, Zimmermann P, Christen R (2013) The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res 41:597–604

    Article  Google Scholar 

  27. Katoh K, Misawa K, Kuma L, Miyata Y (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Galtier N, Gouy M, Gautier C (1996) SeaView and Phylo_Win, two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12:543–548

    CAS  PubMed  Google Scholar 

  29. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

    Article  CAS  PubMed  Google Scholar 

  30. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  CAS  PubMed  Google Scholar 

  31. Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinfoma 17:754–755

    Article  CAS  Google Scholar 

  32. Hamady M, Lozupone C, Knight R (2010) Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J 4:17–27

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Massana R, Castresana J, Balagué V, Guillou L, Romari K, Groisillier A, Valentin K, Pedrós-Alió C (2004) Phylogenetic and ecological analysis of novel marine stramenopiles. Appl Environ Microbiol 70:3528–3534

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–656

    Article  Google Scholar 

  35. Eilers H, Pernthaler J, Amann R (2000) Succession of pelagic marine bacteria during enrichment: a close look on cultivation-induced shifts. Appl Environ Microbiol 66:4634–4640

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Rappé MS, Connon SA, Vergin KL, Giovannoni SJ (2002) Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418:630–633

    Article  PubMed  Google Scholar 

  37. Pedrós-Alió C (2006) Marine microbial diversity: can it be determined? Trends Microbiol 14:257–263

    Article  PubMed  Google Scholar 

  38. Allers E, Gómez-Consarnau L, Pinhassi J, Gasol JM, Simek K, Pernthaler J (2007) Response of Alteromonadaceae and Rhodobacteriaceae to glucose and phosphorus manipulation in marine mesocosms. Environ Microbiol 9:2417–2429

    Article  CAS  PubMed  Google Scholar 

  39. Jürgens K, Güde H (1994) The potential importance of grazing-resistant bacteria in planktonic systems. Mar Ecol Prog Ser 112:169–188

    Article  Google Scholar 

  40. Davis PG, Sieburth JM (1984) Estuarine and oceanic microflagellate predation of actively growing bacteria: estimation by frequency of dividing-divided bacteria. Mar Ecol Prog Ser 19:237–246

    Article  Google Scholar 

  41. Hahn MW, Moore ERB, Höfle MG (2000) Role of microcolony formation in the protistan grazing defense of the aquatic bacterium Pseudomonas sp. MWH1. Microb Ecol 39:175–185

    PubMed  Google Scholar 

  42. Simek K, Pernthaler J, Weinbauer MG, Hornak K, Dolan JR, Nedoma J, Masin M, Amann R (2001) Changes in bacterial community composition and dynamics and viral mortality rates associated with enhanced flagellate grazing in a mesoeutrophic reservoir. Appl Environ Microbiol 67:2723–2733

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Weber F, del Campo J, Wylezich C, Massana R, Jürgens K (2012) Unveiling trophic functions of uncultured protist taxa by incubation experiments in the brackish Baltic Sea. PLoS One 7:e41970

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Fenchel T (1982) Ecology of heterotrophic microflagellates: II. Bioenergetics and growth. Mar Ecol Prog Ser 8:225–231

    Article  Google Scholar 

  45. Caron DA, Goldman JC, Andersen OK, Dennett MR (1985) Nutrient cycling in a microflagellate food chain: II. Population dynamics and carbon cycling. Mar Ecol Prog Ser 24:243–254

    Article  CAS  Google Scholar 

  46. Eccleston-Parry JD, Leadbeater BSC (1994) A comparison of the growth kinetics of six marine heterotrophic nanoflagellates fed with one bacterial species. Mar Ecol Prog Ser 105:167–177

    Article  Google Scholar 

  47. López-García P, Rodríguez-Valera F, Pedrós-Alió C, Moreira D (2001) Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409:603–607

    Article  PubMed  Google Scholar 

  48. Moon-van der Staay SY, de Wachter R, Vaulot D (2001) Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409:607–610

    Article  CAS  PubMed  Google Scholar 

  49. Patterson DJ, Nygaard K, Steinberg G, Turley CM (1993) Heterotrophic flagellates and other protists associated with oceanic detritus throughout the water column in the mid North Atlantic. J Mar Biol Assoc UK 73:67–95

    Article  Google Scholar 

  50. Vørs N, Buck K, Chavez F, Eikrem W, Hansen L, Ostergaard J, Thomsen H (1995) Nanoplankton of the equatorial Pacific with emphasis on the heterotrophic protists. Deep Sea Res II 42:585–595

    Article  Google Scholar 

  51. Tong SM (1997) Heterotrophic flagellates from the water column in Shark Bay, Western Australia. Mar Biol 128:517–536

    Article  Google Scholar 

  52. Tong SM, Vørs N, Patterson DJ (1997) Heterotrophic flagellates, centrohelid heliozoa and filose amoebae from marine and freshwater sites in the Antarctic. Polar Biol 18:91–106

    Article  Google Scholar 

  53. Tikhonenkov DV, Mazei YA (2006) Distribution of heterotrophic flagellates at the littoral of estuary of Chernaya River (Kandalaksha Bay, White Sea). Russ J Mar Biol 32:276–283

    Article  Google Scholar 

  54. Tikhonenkov DV, Mazei YA, Mylnikov AP (2006) Species diversity of heterotrophic flagellates in White Sea littoral sites. Eur J Protistol 42:191–200

    Article  PubMed  Google Scholar 

  55. del Campo J, Not F, Forn I, Sieracki ME, Massana R (2013) Taming the smallest predators of the oceans. ISME J 7:351–358

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by projects MICROVIS (CTM2007-62140/MAR, MEC), FLAME (CGL2010-16304, MICINN) and the European Funding Agencies from the ERA-net program BiodivERsA under the BioMarKs project. Javier del Campo was funded by I3P program (I3PPRE-06-00676, CSIC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier del Campo.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

UniFrac Cluster Sample analysis. The scale bar shows the distance between clusters in UniFrac units: a distance of 0 means that two samples are identical, and a distance of 0.5 means that two samples contain mutually exclusive lineages. (PDF 250 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

del Campo, J., Balagué, V., Forn, I. et al. Culturing Bias in Marine Heterotrophic Flagellates Analyzed Through Seawater Enrichment Incubations. Microb Ecol 66, 489–499 (2013). https://doi.org/10.1007/s00248-013-0251-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-013-0251-y

Keywords

Navigation